Intellectual Property-Related Preferential Trade Agreements and the Composition of Trade

Keith E. Maskus and William Ridley

Presentation at IPSDM

November 14, 2017

Introduction

- International economists focus their analysis on commercial policies (tariffs, investment and service barriers) and changes in technology and transport costs.
- Far less studied but at least as important are trade-related regulatory systems:
 - Rules of origin;
 - Investment regulations;
 - Competition policy;
 - Financial markets regulation;
 - Technical product standards;
 - Labor protection rules, etc.
 - Intellectual property rights

The globalized IPRs system

- Last 20+ years have seen unprecedented expansion and harmonization of IPRs protection.
 - TRIPS at the WTO, subject to dispute settlement;
 - Additional WIPO treaties and rules;
 - "TRIPS-Plus" requirements in various PTAS; MFN requirements in TRIPS ratchet up protection.
 - Extension of investment protection guarantees to IPRs in BITs, IIAs, and PTAs.

Expanding attention paid to IPR over time in PTAs and Partnership Agreements

- US-Israel FTA 1985: one paragraph mentioning NT and MFN.
- NAFTA 1994: essentially anticipated TRIPS.
- US-Jordan FTA 2001 ("gold standard" IPR): 5 pages, added some TRIPS-Plus features in patent standards, pharma, test data, digital CRs and anticircumvention.
- US-Chile 2004: regularized test data periods, PV patents.
- US-Australia 2005: further pharma protection, linkage, limits on CR exceptions.
- US-Korea 2012: further limits on CR exceptions, patents for new uses, no pregrant opposition, detailed rules on ISPs, extensive enforcement.
- TPP: biologics test data protection, trade secrets obligations, criminal enforcement.
- EU Partnership Agreements increasingly focus on IP issues, especially GIs.

IP-related PTAs

- Well over 400 PTAs exist currently (more if we include sector-specific agreements).
- 50 (as of 2015) have IP chapters of varying complexity. Most of these involve a developed country partner but newer developing-country PTAs increasingly feature them.
- 82 countries are now members of at least one such PTA (Figure 1A).
- We will define our "treatment" PTAs as those involving the US or EU/EFTA as a partner (Figure 1B and 1C).
- These PTAs vary in their legal coverage (Figure 2).
- It is also significant that PTAs increasingly feature additional chapters on related regulation areas (Figure XX, not in paper).

Figure 1: Number of IP-related trade agreements and number of countries with membership in one or more IP-related trade agreements by year, 1990 to 2015

Source: Based on data from Dür et al. (2014)

Figure 2: Number of IP-related trade agreements by presence of specific provisions

Source: Authors' construction

Figure: Share of existing trade agreements with non-trade provisions

Motivation

- All of this suggests a potentially rich area for trade research on the economic effects of IPRs (and regulatory chapters) of PTAs.
- Some questions to be asked:
 - Do IP-related PTAs matter beyond the effects of TRIPS?
 - Are there impacts on trade, FDI, licensing, and innovation?
 - How do IPRs affect fixed costs of entering markets (by different modes) and does this vary within IP-related PTAs compared to others?
 - Are there interactions between IPRs and tariff cutting in PTAs?
 - Are there interactions between IPRs and other regulatory elements of PTAs?
 - Is there endogenous selection of IPRs chapters?
- Current paper is a first attempt at the most basic question: do IP-related PTAs have exceptional effects on member countries' aggregate trade flows?
- Paper's results raise more questions than they answer.

Identification approach

- Our analysis uses a DID approach to study imports and exports. We apply the method to both TRIPS effects and IP-related PTA (IPA) effects.
- Data sample: all countries in Comtrade, 1993-2013, exports and imports broken down into high-IP and low-IP goods.
- Sectors further broken down into specific IP-sensitive types of goods (patents, CRs, TMs) and then specific IP-intensive sectors.

Identification approach

- So identification is based on:
 - Difference 1: subset of countries joined an IPA with US or EU/EFTA (treatment), others did not (control). Dummy variable for year of joining and after. Also broken down by income group (development level).
 - Corresponding difference in dates at which countries came into compliance with TRIPS.
 - Difference 2: effects should differ between high-IP (treatment) and low-IP (control), using various definitions.
 - Difference 3: our preferred specification focuses on countries joining IPAs *after* becoming compliant with TRIPS.
- Endogeneity: we take TRIPS and IPRs rules in PTAs to be exogenously imposed in most PTA partners.
 - Developing and emerging countries would not likely adopt such rules endogenously.
 - For most PTA members the IPRs chapters are seen as secondary to gaining market access.

Baseline case: Imports and exports of high-IP vs. low-IP goods

- Essential questions:
 - Is there an impact of IPAs on high-IP versus low-IP trade?
 - Is there a difference between TRIPS and IPAs?

• Regression:

$$\log (TR_{ist}) = \beta_1 \log (GDP_{it}) + \beta_2 High-IP_s \times \log (GDP_{it}) + \beta_3 IPA_{it} + \beta_4 High-IP_s \times IPA_{it}$$

$$+ \beta_5 TRIPS_{it} + \beta_6 High-IP_s \times TRIPS_{it} + \alpha_{gst} + \alpha_i(\alpha_{it}) + \varepsilon_{ist}$$
(1)

Baseline case

- TR_{ist} = imports or exports of country i in s (high or low-IP), year t.
- IPA_{it} = indicator variable for whether i is a member of at least one IPA (in force) at t.
 - Definition 1: entered an IPA at any time ("contemporaneous")
 - Definition 2: entered an IPA after in compliance with TRIPS ("post").
- TRIPS_{it} = indicator variable for whether i is compliant with TRIPS at t.
- HighIP_s = indicator variable for high-IP industry group.
- FE's for income group-sector-year and countries or country-year (latter is preferred).
- β_3 = extra trade effect in low-IP of IPA vs. non-IPA (β_5 for TRIPS).
- β_4 = extra trade effect within IPA of high-IP vs. low-IP (β_6 for TRIPS).

Case 2: effects also vary by income group

• Regression:

$$\log (TR_{ist}) = \beta_1 \log (GDP_{it}) + \beta_2 High-IP_s \times \log (GDP_{it})$$

$$+ \beta_3 IPA_{it} + \sum_g \beta_{4g} Group_i \times IPA_{it} + \sum_g \beta_{5g} Group_i \times High-IP_s \times IPA_{it}$$

$$+ \beta_6 TRIPS_{it} + \sum_g \beta_{7g} Group_i \times TRIPS_{it} + \sum_g \beta_{8g} Group_i \times High-IP_s \times TRIPS_{it}$$

$$+ \alpha_{gst} + \alpha_{it} + \varepsilon_{ist}$$

$$(2)$$

• Group = low-income (LI), middle-income (MI), or high-income (HI) based on World Bank definitions in 1995. Proxy for development levels.

Case 2

- β_{4g} = extra trade effect in low-IP of IPA in group g (we exclude HI).
- β_{5g} = extra trade effect within IPA on high-IP goods in group g (include all groups).
- Similar for TRIPS (β_{7g} , β_{8g}).
- Results are in Table 2 for imports and Table 3 for exports.

Key results imports: cases 1 and 2 (Table 2)

- Market size matters for imports and there is a positive interaction in trade between GDP and high-IP sectors.
- IPA membership seems to have little direct effect on imports (column 1).
- TRIPS compliance has distinctive direct impacts on imports in low-IP versus high-IP (column 1).
- Permitting heterogeneous interactions broken down by income groups yields new results:
 - IPAs: high-IP imports rise sharply compared to low-IP (which fall) in low-income.
 - There are parallel effects of TRIPS in imports of middle-income.
- These results are robust to country time trends and post-TRIPS entry into IPAs.

Table 2: Aggregate imports of IP-intensive commodities

	(1)	(2)	(3)	(4)
		Contemporaneous entry		Post-TRIPS entry
	Homogeneous	Country	Country time	Country time
	effects	FEs	trends	trends
log (GDP)	0.743***	0.736***	0.731***	0.732***
108 (021)	(0.0593)	(0.0594)	(0.0593)	(0.0594)
$High-IP \times log(GDP)$	0.0890***	0.0923***	0.0923***	0.0920***
8(/	(0.0119)	(0.0117)	(0.0117)	(0.0112)
IPA	-0.0463	-0.0937	-0.0945	0.0305
	(0.0592)	(0.0901)	(0.0907)	(0.0859)
$High-IP \times IPA$	-0.0267	,	, ,	,
	(0.0644)			
Mid-inc.×IPA		0.111	0.111	-0.0628
		(0.111)	(0.111)	(0.112)
$Low-inc.\times IPA$		-0.470**	-0.472**	-0.596***
		(0.210)	(0.210)	(0.208)
$High-inc.\times High-IP\times IPA$		0.0367	0.0367	0.0248
		(0.122)	(0.122)	(0.107)
$Mid-inc.\times High\ IP\times IPA$		-0.105	-0.105	-0.0410
		(0.0679)	(0.0679)	(0.0716)
$Low-inc.\times High\ IP\times IPA$		0.660***	0.660***	0.659***
		(0.103)	(0.103)	(0.103)

TRIPS	-0.153*** (0.0575)	0.122 (0.108)	0.122 (0.108)	0.100 (0.106)
${\bf High~IP}{\bf \times TRIPS}$	0.200*** (0.0487)	(0.100)	(0.108)	(0.100)
Mid-inc.×TRIPS	(=====)	-0.327**	-0.327**	-0.296**
		(0.134)	(0.134)	(0.132)
Low-inc.×TRIPS		-0.286*	-0.288*	-0.266*
		(0.152)	(0.152)	(0.150)
$High-inc.\times High\ IP\times TRIPS$		-0.114	-0.114	-0.102
		(0.145)	(0.145)	(0.140)
$Mid-inc.\times High\ IP\times TRIPS$		0.292***	0.292***	0.269***
		(0.0538)	(0.0538)	(0.0530)
$Low-inc.\times High\ IP\times TRIPS$		0.142	0.142	0.142
		(0.0959)	(0.0959)	(0.0958)
Observations	6,176	6,176	6,176	6,176
R-squared	0.981	0.981	0.981	0.981
Income group-sector-year FE	Yes	Yes	Yes	Yes
Country FE	Yes	Yes	Yes	No
Country trends	No	No	No	Yes
Number of countries	185	185	185	185

Notes: Robust standard errors clustered by country are reported in parentheses. The omitted IPA and TRIPS dummies in columns (3) and (4) are High-inc.×IPA and High-inc.×TRIPS. *** p < 0.01, ** p < 0.05, * p < 0.1.

Key results exports: cases 1 and 2 (Table 3)

- Market size (capacity) also matters for exports and high-IP sectors.
- Again, IPA has little direct effect on exports.
- TRIPS direct effects are similar (- in low-IP; + in high-IP) for both imports and exports.
- Heterogeneity in income groups:
 - Direct exports effects of IPAs are insignificant but there is a highly significant positive effect in high-IP goods among middle-income.
 - Direct exports effects of TRIPS are negative, with some offset in high-IP goods.
- Evident results at this point:
 - High-IP imports in low-income countries are stimulated by IPAs and in middle-income countries by TRIPS.
 - High-IP exports in middle-income countries are stimulated by IPAs.
 - TRIPS may diminish overall trade in both groups but expands high-IP exports in middle-income.

Table 3: Aggregate exports of IP-intensive commodities

	(1)	(2)	(3)	(4)
	Co	ontemporaneo	ous	Post-TRIPS
		entry		entry
	Homogeneous	Country	Country time	Country time
	effects	FEs	trends	trends
log (GDP)	0.449***	0.448***	0.442***	0.438***
	(0.133)	(0.134)	(0.133)	(0.132)
$High-IP \times log (GDP)$	0.209***	0.219***	0.219***	0.225***
	(0.0644)	(0.0646)	(0.0646)	(0.0641)
IPA	-0.231*	-0.208	-0.207	-0.236
	(0.134)	(0.238)	(0.237)	(0.237)
$High-IP \times IPA$	0.346			
	(0.211)			
$Mid\text{-}inc.\times IPA$		-0.129	-0.132	-0.210
		(0.285)	(0.284)	(0.283)
Low-inc.×IPA		0.382	0.377	0.402
		(0.356)	(0.355)	(0.353)
High-inc.×High IP×IPA		0.387	0.387	0.359
		(0.464)	(0.464)	(0.414)
$Mid-inc.\times High\ IP\times IPA$		0.561***	0.561***	0.785***
		(0.211)	(0.211)	(0.217)
Low-inc.×High IP×IPA		-0.610*	-0.610*	-0.601
		(0.367)	(0.367)	(0.365)

TRIPS	-0.367** (0.156)	0.374 (0.313)	0.378 (0.312)	0.364 (0.295)
${\bf High~IP}{\bf \times TRIPS}$	0.451* (0.273)	(0.010)	(0.012)	(0.200)
Mid-inc.×TRIPS	,	-0.825**	-0.831**	-0.810**
		(0.381)	(0.381)	(0.368)
Low-inc.×TRIPS		-0.870**	-0.882**	-0.864**
		(0.415)	(0.414)	(0.402)
$High-inc. \times High IP \times TRIPS$		-1.074*	-1.074*	-1.036*
		(0.587)	(0.587)	(0.547)
Mid -inc. $\times High\ IP \times TRIPS$		0.700*	0.700*	0.678*
		(0.408)	(0.408)	(0.404)
$Low-inc. \times High IP \times TRIPS$		0.602	0.602	0.595
		(0.372)	(0.372)	(0.372)
Observations	6,139	6,139	6,139	6,139
R-squared	0.918	0.920	0.920	0.920
Income group-sector-year FE	Yes	Yes	Yes	Yes
Country FE	Yes	Yes	Yes	No
Country trends	No	No	No	Yes
Number of countries	186	186	186	186

Notes: Robust standard errors clustered by country are reported in parentheses. The omitted IPA and TRIPS dummies in columns (3) and (4) are High-inc.×IPA and High-inc.×TRIPS. *** p < 0.01, ** p < 0.05, * p < 0.1.

Case 3: disaggregating high-IP goods by IPR type

• Regression:

$$\log (TR_{ist}) = \beta_1 \log (GDP_{it}) + \sum_s \beta_{2s} Type_s \times \log (GDP_{it})$$

$$+ \beta_3 IPA_{it} + \sum_g \beta_{4g} Group_i \times IPA_{it} + \sum_g \sum_s \beta_{5gs} Group_i \times Type_s \times IPA_{it}$$

$$+ \beta_6 TRIPS_{it} + \sum_g \beta_{7g} Group_i \times TRIPS_{it} + \sum_g \sum_s \beta_{8gs} Group_i \times Type_s \times TRIPS_{it}$$

$$+ \alpha_{gst} + \alpha_{it} + \varepsilon_{ist}$$

$$(3)$$

- Type_s = indicator variables for high-IP sector dependence on patents, CRs, or TMs.
- This is a basic attempt to get at whether the varying coverage in IPAs matters for trade.

Key results imports: case 3 (Table 4)

- Note these are single regressions with larger sample sizes.
- Incorporate country time trends and post-TRIPS entry.
- The relative expansion of high-IP imports in low-income IPA economies exists in all 3 types of IP.
- Imports are not much affected by IPA membership among middle-income countries.
- But TRIPS is different: a direct reduction in low-IP imports but a strong increase in each type of IP among middle-income.
- Low-income imports of TM-sensitive goods seem to rise due to TRIPS.
- These findings suggest that results in the literature of a pro-imports effect of TRIPS may be due to a combination of TRIPS and IPAs.

Table 4: Aggregate imports by type of IP-intensiveness (single regression)

30 0	(1)	i intensiveness (single regress	(2)
	IPA		TRIPS
	11 71		IIII
$\log{(GDP)}$	0.762***		
log (GDI)	(0.0613)		
$PAT \times log(GDP)$	0.110***		
1111 × 10g (GD1)	(0.0117)		
$CR \times log(GDP)$	-0.0927***		
Cit × log (GD1)	(0.0223)		
$TM \times log (GDP)$	0.0529***		
TM × log (GDT)			
IPA	(0.0125) -0.107	TRIPS	0.118
IFA		TUILS	
Male IDA	(0.128)	Maria Maria	(0.178)
Mid-inc.×IPA	0.0689	Mid-inc.×TRIPS	-0.379*
	(0.149)		(0.197)
Low-inc.×IPA	-0.596***	Low-inc.×TRIPS	-0.309
	(0.227)		(0.216)
High-inc. \times PAT \times IPA	-0.0335	High-inc. \times PAT \times TRIPS	-0.0353
	(0.110)		(0.123)
High-inc. \times CR \times IPA	0.318	High-inc. \times CR \times TRIPS	-0.208
	(0.208)		(0.487)
High-inc. \times TM \times IPA	0.297*	$High-inc. \times TM \times TRIPS$	-0.0167
	(0.155)		(0.164)

$\text{Mid-inc.} \times \text{PAT} \times \text{IPA}$	-0.0735	$\text{Mid-inc.} \times \text{PAT} \times \text{TRIPS}$	0.312***
$\text{Mid-inc.} \times \text{CR} \times \text{IPA}$	(0.0762) 0.0494	$Mid-inc. \times CR \times TRIPS$	(0.0582) $0.442***$
3.5.1. TD.	(0.126)	Mark The	(0.147)
$Mid-inc. \times TM \times IPA$	0.0938 (0.0653)	$Mid-inc. \times TM \times TRIPS$	0.160*** (0.0590)
$\text{Low-inc.} \times \text{PAT} \times \text{IPA}$	0.652***	$\text{Low-inc.} \times \text{PAT} \times \text{TRIPS}$	0.121
I i CD IDA	(0.121)	T . OD TIDIDO	(0.105)
Low-inc. \times CR \times IPA	0.832*** (0.124)	Low-inc. \times CR \times TRIPS	0.0479 (0.158)
$\text{Low-inc.} \times \text{TM} \times \text{IPA}$	0.737***	$\operatorname{Low-inc.} \times \operatorname{TM} \times \operatorname{TRIPS}$	0.267***
	(0.0893)		(0.0912)
Observations			12,335
R^2			0.973
Income group-sector-year FE			Yes
Country time trends			Yes

Notes: Robust standard errors clustered by country are reported in parentheses. The omitted IPA and TRIPS dummies are High-inc.×IPA and High-inc.×TRIPS. Reported coefficiencts are estimated from a single regression of aggregate imports on the set of controls in equation (3). *** p < 0.01, *** p < 0.05, * p < 0.1.

Key results exports (case 3): Table 5

- Middle-income countries in IPAs see significantly higher exports in all 3 IP types.
- With this breakdown, TRIPS seems to have negative direct effects on exports of both middle-income and lower-income economies.
- But both patent-dependent and TM-dependent exports have significantly positive coefficients in middle-income; also in TM for low-income.
- These TM effects may reflect growth in footwear and furniture exports.

Table 5: Aggregate exports by type of IP-intensiveness (single regression)

	(1)	,	(2)
	IPΑ		TRIPS
1/CIDD\	0.290**		
$\log (GDP)$			
DATE 1 (CDD)	(0.142)		
$PAT \times log(GDP)$	0.222***		
	(0.0631)		
$CR \times log(GDP)$	0.147**		
	(0.0598)		
$TM \times log(GDP)$	0.360***		
,	(0.0696)		
IPA	-0.582*	TRIPS	0.995**
	(0.315)		(0.459)
Mid-inc.×IPA	-0.0756	Mid-inc.×TRIPS	-1.513***
14114 1116.711 11	(0.360)	Wild Hie. X LIGHT D	(0.520)
Low-inc.×IPA	0.723	Low-inc.×TRIPS	-1.682***
Low-IIIc.×II A		Low-Inc.× 1 KH S	
III 1 DATE IDA	(0.449)	II. 1 DATE . TEDIDO	(0.567)
$High-inc. \times PAT \times IPA$	0.547	High-inc. \times PAT \times TRIPS	-1.086**
	(0.421)		(0.522)
High-inc. \times CR \times IPA	0.791**	High-inc. \times CR \times TRIPS	-1.450*
	(0.364)		(0.771)
$High-inc. \times TM \times IPA$	0.444	High-inc. \times TM \times TRIPS	-1.343*
	(0.522)		(0.764)
	* *		

$\text{Mid-inc.} \times \text{PAT} \times \text{IPA}$	0.868*** (0.229)	$\text{Mid-inc.} \times \text{PAT} \times \text{TRIPS}$	0.616* (0.357)
Mid-inc. \times CR \times IPA	1.168***	$\text{Mid-inc.} \times \text{CR} \times \text{TRIPS}$	0.459 (0.362)
$\text{Mid-inc.} \times \text{TM} \times \text{IPA}$	0.751***	$\text{Mid-inc.} \times \text{TM} \times \text{TRIPS}$	0.855**
$\text{Low-inc.} \times \text{PAT} \times \text{IPA}$	(0.222)	$\operatorname{Low-inc.} \times \operatorname{PAT} \times \operatorname{TRIPS}$	(0.408)
$\text{Low-inc.} \times \text{CR} \times \text{IPA}$	(0.411) 0.200	${\rm Low\text{-}inc.}\times{\rm CR}\times{\rm TRIPS}$	(0.376) -0.00335
$\text{Low-inc.} \times \text{TM} \times \text{IPA}$	(0.446) -0.0578	$Low\text{-inc.} \times TM \times TRIPS$	(0.418) $0.767*$
	(0.419)		(0.420)
Observations			12,090
R^2			0.915
Income group-sector-year FE			Yes
Country time trends			Yes

Notes: Robust standard errors clustered by country are reported in parentheses. The omitted IPA and TRIPS dummies are High-inc.×IPA and High-inc.×TRIPS. Reported coefficiencts are estimated from a single regression of aggregate exports on the set of controls in equation (3). *** p < 0.01, ** p < 0.05, * p < 0.1.

Case 4: Disaggregating high-IP goods by industrial cluster

Regression:

$$\log (TR_{ist}) = \beta_1 \log (GDP_{it}) + \sum_s \beta_{2s} Sector_s \times \log (GDP_{it})$$

$$+ \beta_3 IPA_{it} + \sum_g \beta_{4g} Group_i \times IPA_{it} + \sum_g \sum_s \beta_{5gs} Group_i \times Sector_s \times IPA_{it}$$

$$+ \beta_6 TRIPS_{it} + \sum_g \beta_{7g} Group_i \times TRIPS_{it} + \sum_g \sum_s \beta_{8gs} Group_i \times Sector_s \times TRIPS_{it}$$

$$+ \alpha_{gst} + \alpha_{it} + \varepsilon_{ist}$$

$$(4)$$

Now Sector_s = indicator for analytical instruments (AI), biopharmaceuticals (BIO), chemicals (CHEM), information and communication technologies (ICT), medical devices (MED), and production technologies (PT).

Key results (case 4): Tables 6 and 7

- For high-income countries, both imports and exports of BIO are sensitive to IPA membership.
- Exports of CHEM, MED, and PT are also positively affected.
- For middle-income economies all of the export triple interactions are significantly positive. This seems to be a primary trade effect of IPA membership.
- Low-income countries have generally positive import impacts but negative export effects in the IPA interactions. Exception is BIO.
- TRIPS compliance reduces low-IP imports and exports in both types of developing countries.
- But triple interactions with TRIPS are again significantly positive for middle-income imports. This seems to be a primary trade effect of TRIPS.

Table 6: Aggregate imports	bv.	IP-intensive	industry	cluster	(single	regression)
	100					

	(1) IPA		(2) TRIPS
log (GDP)	0.664***		
	(0.0711)		
$AI \times log (GDP)$	0.277***		
DIO I (ODD)	(0.0204)		
$BIO \times log (GDP)$	0.0808***		
CHEM (CDD)	(0.0308)		
$CHEM \times log (GDP)$	0.265***		
ICT× log (GDP)	(0.0211) 0.140***		
IC1 × log (GDF)	(0.0189)		
$MED \times log (GDP)$	0.153***		
miles rog (GDT)	(0.0193)		
$PT \times log(GDP)$	0.197***		
,	(0.0168)		
IPA	-0.104	TRIPS	0.347
	(0.155)		(0.232)
Mid-inc.×IPA	0.0708	Mid-inc.×TRIPS	-0.683***
	(0.176)		(0.256)
Low-inc.×IPA	-0.512**	Low-inc.×TRIPS	-0.587**
	(0.224)		(0.272)
High-inc. \times AI \times IPA	-0.0670	High-inc. \times AI \times TRIPS	0.0121
H. I. BIO ID.	(0.158)	II. I . DIO EDIDO	(0.300)
$High-inc. \times BIO \times IPA$	0.639***	High-inc. \times BIO \times TRIPS	0.0381
$High-inc. \times CHEM \times IPA$	(0.198) 0.307	High-inc. \times CHEM \times TRIPS	(0.499) -0.306
Ingli-life. A CHEW A II A	(0.186)	mgn-me. A CHEW A TICH 5	(0.434)
High-inc. \times ICT \times IPA	-0.199	High-inc. \times ICT \times TRIPS	-0.154
ingil-inc. A to t A ti A	(0.173)	mgn-me. A tot A time	(0.328)
$High-inc. \times MED \times IPA$	0.180	High-inc. \times MED \times TRIPS	-0.144
	(0.137)		(0.244)
High-inc. \times PT \times IPA	-0.0618	High-inc. \times PT \times TRIPS	-0.394*
	(0.176)		(0.214)

$\text{Mid-inc.} \times \text{AI} \times \text{IPA}$	-0.0817	$Mid\text{-}inc. \times AI \times TRIPS$	0.389***
$\text{Mid-inc.} \times \text{BIO} \times \text{IPA}$	(0.119) 0.168	${\rm Mid\text{-}inc.}\times{\rm BIO}\times{\rm TRIPS}$	(0.142) 0.343**
Mid -inc. \times $CHEM \times IPA$	(0.123) -0.168*	Mid -inc. \times CHEM \times TRIPS	(0.162) 0.434***
	(0.0880)		(0.120)
Mid -inc. \times $ICT \times IPA$	-0.0138 (0.144)	Mid-inc. \times ICT \times TRIPS	0.537*** (0.103)
$\operatorname{Mid-inc.} \times \operatorname{MED} \times \operatorname{IPA}$	-0.0876	$\operatorname{Mid-inc.} \times \operatorname{MED} \times \operatorname{TRIPS}$	0.240*
$\text{Mid-inc.} \times \text{PT} \times \text{IPA}$	(0.0815) -0.154*	$\text{Mid-inc.} \times \text{PT} \times \text{TRIPS}$	(0.125) 0.193**
	(0.0809)		(0.0898)
Low-inc. \times Al \times IPA	0.342*	Low-inc. \times Al \times TRIPS	0.322*
	(0.177)		(0.166)
Low-inc. \times BIO \times IPA	1.363***	Low-inc. \times BIO \times TRIPS	-0.0576
	(0.200)		(0.196)
Low-inc. \times CHEM \times IPA	0.352**	Low-inc. \times CHEM \times TRIP:	
	(0.147)		(0.122)
Low-inc. \times ICT \times IPA	0.462***	Low-inc. \times ICT \times TRIPS	0.174
T Mark Th.	(0.0921)	T TOTAL TOTAL	(0.127)
Low-inc. \times MED \times IPA	0.809***	Low-inc. \times MED \times TRIPS	-0.0381
	(0.153)		(0.203)
Low-inc. \times PT \times IPA	0.154	Low-inc. \times PT \times TRIPS	0.207*
	(0.207)		(0.122)
Observations			21,414

Table 7: Aggregate exports by IP-intensive industry cluster (single regression)

	(1) IPA		(2) TRIPS
log (GDP)	0.300**		
	(0.140)		
$AI \times log (GDP)$	0.313***		
	(0.0674)		
$BIO \times log (GDP)$	0.401***		
	(0.0723)		
$CHEM \times log (GDP)$	0.491***		
	(0.0800)		
$ICT \times log (GDP)$	0.306***		
	(0.0865)		
$MED \times log (GDP)$	0.411***		
	(0.0615)		
$PT \times log(GDP)$	0.265***		
	(0.0548)		
IPA	-0.773*	TRIPS	1.028*
	(0.417)		(0.553)
Mid-inc.×IPA	-0.206	Mid-inc.× $TRIPS$	-1.598***
	(0.475)		(0.601)
Low-inc.×IPA	1.383**	Low-inc.×TRIPS	-1.503**
	(0.544)		(0.646)
$High-inc. \times AI \times IPA$	0.748	High-inc. \times AI \times TRIPS	-0.520
	(0.502)		(0.701)
High-inc. \times BIO \times IPA	2.146***	High-inc. \times BIO \times TRIPS	-1.156
	(0.570)		(0.745)
High-inc. \times CHEM \times IPA	1.108*	High-inc. \times CHEM \times TRIPS	-1.216
	(0.571)		(0.761)
High-inc. \times ICT \times IPA	0.193	High-inc. \times ICT \times TRIPS	-0.793
	(0.561)		(0.724)
High-inc. \times MED \times IPA	0.978**	High-inc. \times MED \times TRIPS	-1.502*
	(0.468)		(0.782)
High-inc. \times PT \times IPA	0.864**	High-inc. \times PT \times TRIPS	-1.170*
	(0.426)		(0.644)

$\text{Mid-inc.} \times \text{AI} \times \text{IPA}$	1.272***	$\text{Mid-inc.} \times \text{AI} \times \text{TRIPS}$	0.743**
Mid -inc. \times $BIO \times IPA$	(0.346) 1.221***	Mid -inc. \times $BIO \times TRIPS$	(0.359) 0.0956
	(0.375)		(0.361)
Mid -inc. $\times CHEM \times IPA$	0.650***	Mid -inc. $\times CHEM \times TRIPS$	0.763*
	(0.243)		(0.390)
Mid -inc. $\times ICT \times IPA$	1.418***	Mid -inc. $\times ICT \times TRIPS$	0.777
	(0.405)		(0.475)
Mid -inc. $\times MED \times IPA$	1.483***	Mid -inc. $\times MED \times TRIPS$	0.414
	(0.368)		(0.390)
Mid -inc. $\times PT \times IPA$	1.069***	Mid -inc. $\times PT \times TRIPS$	0.490
	(0.271)		(0.340)
Low-inc. \times AI \times IPA	-1.473***	Low-inc. \times AI \times TRIPS	0.298
	(0.343)		(0.410)
Low-inc. \times BIO \times IPA	1.123**	Low-inc. \times BIO \times TRIPS	0.366
	(0.524)		(0.492)
Low-inc. \times CHEM \times IPA	-1.243*	Low-inc. \times CHEM \times TRIPS	0.354
	(0.751)		(0.537)
Low-inc. \times ICT \times IPA	0.965	Low-inc. \times ICT \times TRIPS	0.657*
	(0.855)	T . Man and the second	(0.351)
Low-inc. \times MED \times IPA	-0.737**	Low-inc. \times MED \times TRIPS	0.455
	(0.299)		(0.407)
Low-inc. \times PT \times IPA	-1.349***	Low-inc. \times PT \times TRIPS	0.441
	(0.354)		(0.370)
Observations			20,253

Conclusions and extensions

- Initial evidence here is that IP-related PTAs are an important determinant of trade composition.
- Imports of high-IP goods seem to be stimulated by IPA membership most in low-income countries but exports are more sensitive in middle-income countries.
- In many dimensions these IPA effects seem to dominate those of TRIPS.
- But this work needs to be extended and refined. Some ideas:
 - Extend to sectoral trade to distinguish (1) intermediates versus final goods; and (2) intensive versus extensive margin effects.
 - Extend to bilateral trade to see if there are "IP-related" trade diversion and trade creation.
 - Study channels through which these effects may be happening (FDI, R&D, patenting, etc.)
 - Study whether IP chapters interact with other regulatory features of PTAs, including tariff cuts.