

Transition Towards a Green Economy in Europe: Innovation and Knowledge Integration in the Renewable Energy Sector

E. Verdolini

joint work with: C. Conti, M. L. Mancusi, F. Sanna-Randaccio, R. Sestini

Outline

- Motivation
- Contribution
- Empirical proxies
- Data and Descriptives
 Conclusions

- Empirical model
- Main Results
- Robustness

Motivation

Contribution

Investigate the fragmentation of the EU renewable (RES) innovation system by estimating the intensity and direction of knowledge flows over the years 1985-2010.

- Performance of EU countries vis-à-vis other top innovators
- For the EU, distinguish between domestic and other EU citations
- Focus on two periods: pre and post 2000
- (Indirectly) test the effectiveness of actions and policy support to promote RES development

Results

- Knowledge flows across EU countries increased
- The importance of the EU as a source country for knowledge spillovers increased
- Yet, EU is still poorly integrated compared to US or JP

Empirical Proxies

Patent citations

=

flows of codified knowledge

- +: Valid measures of linkages between innovations
- +: Widely used to study how knowledge diffuses across geographical and technological spaces, few applications in environmental/energy technologies
- -: Noisy measures (Griliches, 1990, Jaffe et al. 1998)

Data and Descriptives

- Patent applications at the EPO between 1985 and 2010 and their citations (EP-CRIOS Database)
- Patents assigned to EU15, US and JP (country of residence of the inventor)
- RES technologies identified by IPC codes: Hydro, Solar, Wind, Biomass, Geothermal, Ocean, Waste (but also Y02)

RENEWABLE ENERGY TECHNOLOGIES									
			Backward	Avg	Citations	Received			
Country	Patents	Percent	citations	Citation/Patent	received	Citation/Patent			
EU15	14,263	0.62	24,478	1.72	23,082	1.62			
JP	4,169	0.18	6,482	1.55	8,098	1.94			
US	4,730	0.2	12,130	2.56	11,910	2.56			
Total	23,162	1	43,090	1.86	43,090	1.86			

Data: Citation patterns pre/post 2000

EU RES support (and innovation)个 steadily What about knowledge flows?

RENEWABLE TECHNOLOGIES										
Period of reference		198	1987-1997		Period of reference		2000-2010			
Cited					Cited					
country		EU15	JP	US	country		EU:	15	JP	US
		Nat Int					Nat	Int		
Citing			,		Citing					
country	EU15	0.33 0.25	0.10	0.32	country	EU15	0.32	0.44	0.10	0.14
	JP	0.27	0.29	0.44		JP	0.2	26	0.61	0.13
	US	0.34	0.12	0.54		US	0.4	11	0.17	0.42

EU15

↑
EU15

EU15 ↓ US US ↑ EU15 JP ↑↑ JP

Empirical Approach

$$p_{iTjt} = \frac{C_{iTjt}}{(N_{iT})(N_{jt})} =$$

$$\frac{\alpha_T \alpha_t \alpha_{ij}}{1 + \phi_{ij} * D_{2000}} \exp[-\beta_1 (T - t)] (1 - \exp[-\beta_2 (T - t)])$$

$$+ \varepsilon_{iTjt}$$

- $\alpha_{ij} \rightarrow$ relative likelihood that the average patent from i is cited by patent from j
- $\phi_{ij} \rightarrow$ increase in the likelihood of citation by patents applied for after 2000
- We look at 3 regions (US, EU15, JP), and distinguish between between EU_{nat} and EU_{int} citations

Main Results

Main Results

$\alpha_{ij} \left[1 + \phi_{ij} * L \right]$
--

	(1)	(2)	(3)	(4)	(5)
Citing/cited country pairs (αi,j) ^(a)					
US citing US			1	1	1
J			NA	NA	NA
EU15 citing EU15					
EU15 citing EU15 (national)			0.661***	0.647***	0.655***
Lors citing Lors (national)			(0.045)	(0.043)	(0.044)
EU15 citing EU15 (international)			0.249***	0.243***	0.246***
			(0.019)	(0.018)	(0.019)
EU15 citing US			0.317***	0.281***	0.314***
•			(0.025)	(0.013)	(0.025)
EU15 citing JP			0.215***	0.171***	0.213***
			(0.022)	(0.008)	(0.022)
US citing EU15			0.314***	0.261***	0.264***
			(0.013)	(0.020)	(0.020)
US citing JP			0.468***	0.469***	0.468***
			(0.027)	(0.027)	(0.027)
JP citing EU15			0.139***	0.169***	0.170***
			(0.007)	(0.015)	(0.015)
JP citing US			0.263***	0.264***	0.264***
			(0.014)	(0.014)	(0.014)
JP citing JP			0.813***	0.819***	0.816***
<u> </u>			(0.039)	(0.039)	(0.039)
			, ,	,	,

Main Results

			$\alpha_{ij}\left[1+\boldsymbol{\phi}_{ij}*\boldsymbol{D}_{2000}\right]$						
Citing pattern differences since 2000 (ϕ_{ii}) (b)									
US citing US	EU15		0	0	0				
	.1.		NA	NA	NA				
EU15 citing EU15 (national)	V		-0.145**	-0.118*	-0.133**				
	Nat, US, Ji		(0.063)	(0.065)	(0.065)				
EU15 citing EU15 (international)	wrt to US/U	US /	0.233**	0.272***	0.251**				
51145 aiting 116			(0.098)	(0.101)	(0.101)				
EU15 citing US	EU15 个 EU	J15	-0.147*		-0.135* (0.078)				
EU15 citing JP			(0.077) -0.244***		(0.078) -0.233***				
LO13 Citing Ir	US 个 EU:	15	(0.084)		-0.233 (0.086)				
US citing EU15	03 10.		7	0.267**	0.245**				
Ü				(0.104)	(0.104)				
JP citing EU15				-0.207***	-0.220***				
	JP ↓ EU15			(0.079)	(0.079)				
Decay $(\beta_1)^{(b)}$	0.263***	0.264***	0.263***	0.263***	0.263***				
	(0.010)	(0.009)	(0.009)	(0.009)	(0.009)				
Diffusion $(\beta_2)^{(b)}$	0.001***	0.001***	0.001***	0.001***	0.001***				
	(0.0001)	(0.0001)	(0.0001)	(0.0001)	(0.0001)				
N° of obs.	3,159	3,510	3,510	3,510	3,510				

Robustness

- This is not driven by Germany (top inventor).
 - Likelihood of DE/EU14 increases post-2000
 - Likelihood of US/EU14 increases post-2000
 - Likelihood of JP/EU14 DOES NOT decrease post-2000
- We don't find the same pattern of change in knowledge flows in fossil technologies
 - On the contrary, the likelihood that a US inventor cites a fossil EU15 patent decreases by 21 percent
- We don't find the same pattern of change in knowledge flows in other radically new technologies (3D, IT, biotechnology, robot)
- Change in pattern is not due to multi-country patenting

Conclusions: positive message

- EU RES inventors have increasingly built "on the shoulders of the other EU giants", intensifying their citations to other member countries and decreasing those to domestic inventors
- Stronger integration of the EU RES knowledge
- The EU strengthened its position as source of RES knowledge for the US

Conclusions

Likely explanation: EU strong commitment to RES climate policies

↑ EU RES innovation

but also

and

↑ EU RES innovation relevance for the US (not JP)

Conclusions

However, EU RES innovative activity still poorly integrated compared to the US or Japan

Call for increased policy support to fully exploit the potential of increased RES innovation

Caveats to our analysis

- Focus on innovation and knowledge flows, not on markets (China and solar panels)
- Evidence of policy impact is suggestive, further analysisneeded

Thank you

elena.verdolini@cmcc.it

This project has received funding from the

European Union's Horizon 2020

research and innovation programme - grant agreement

No 730403 - INNOPATHS.

