
From: Brad Allen [e-mail redacted]
Sent: Sunday, September 26, 2010 10:11 PM
To: Bilski_Guidance
Cc: [e-mail redacted]
Subject: feedback on software patent guidelines

To whom it may concern,

As a professional software developer, I'd like to contribute feedback
about the USPTO's planned new guidelines for reviewing software
patent applications.

I strongly prefer that software patent applications be rejected now and
retroactively. Failing that, software patent applications should have
stricter requirements in order to discourage frivolous software patents
and legalize innovation.

The following points argue for rejecting all software patents outright:

* PRIOR ART: I don't believe the USPTO can or will ever have the
resources to determine whether a software design is an example of
prior art, any more than a person could read every book ever written.
Due to the intractability of determining prior art, software patents
should never be granted.

* MATHEMATICAL: Software is mathematics (per the Church-Turing
Thesis) and therefore not patentable, according to the precedent set
forth in the case of Parker v. Flook (1978, USA). For this reason,
software patents should never be granted.

* FREE EXPRESSION: Software is a form of written expression, and
should therefore be protected as free speech. Software patents
infringe on the free speech of software developers to write down their
ideas in the form of source code. Compiling and running source code
is nothing more than a sophisticated way to interpret that free
expression, like reading a book containing specific instructions. For
this reason, software patents should never be granted.

* ECONOMICS: The sheer volume of software created, the
increasing rapidity of development, and the fluidity of software

integration renders software patent checking and enforcement
impractical and counterproductive. Software developers write code
for work, recreation, and community service; most lack the resources
to check their code against the system of patent entitlements. Fear
and doubt about unrecognized patents hinders innovation and
progress. Meanwhile lawsuits abound to enforce protections on
absurdly broad and obvious software applications. The United States
Constitution established the patent system to "promote the Progress
of Science and useful Arts", but prominent studies have shown the
opposite effect in the case of software patents. The USPTO has a
responsibility to uphold the intent of patent law, and should examine
the research showing how software patents hinder innovation and
progress.

The following arguments suggest an approach toward stricter
requirements for software patents:

* IMPLEMENTATION REQUIREMENT: An invention is not a real
invention if it is only a plan or idea. The invention must be functional
in a testable way; automated tests must be presented to validate
described functionality.

* ALLOW FOR "A BETTER MOUSETRAP": The patent should apply
to the implementation, not the high level functionality. Third parties
who wish to implement the same idea should not be restricted from
pursuing the same functionality as long as the implementation
(source code) is publicly disclosed. This requirement puts software
patents back in the game of encouraging innovation, by discouraging
closed source software. It also discourages frivolously broad patent
applications such as "one click purchase."

* SOURCE CODE REQUIREMENT: Human readable source code is
a pre-requisite for making a determination of prior art. If the code is
obfuscated in any way, then the application should be considered too
sloppy to accept.

* DEPENDENCY REVIEW: If a particular implementation is not self
contained, but depends upon another piece of software, serious
questions should be raised about whether the software is truly
original.

* PEER REVIEW: Review of software functionality and
implementation is highly subjective. A public peer review process
should be established to balance the subjectivity of patent examiners.

This may not be the forum to argue about the societal harms and
benefits of software patents; regardless, I hope the USPTO patent
officials clearly understand that by accepting software patents they
contribute to an accumulating societal cost with no redeeming
benefits to society at large. After all, the original purpose of patents
was protecting the efforts of those who invested in innovation; today
the reality of the software marketplace shows that innovation
happens not because of software patents, but in spite of software
patents.

The views I have expressed here are common among software
developers and in industry news publications. Frequently I hear that
many corporations bear heavy costs to patent their software
"defensively", and might breathe a collective sigh of relief if they could
somehow achieve multilateral software patent disarmament.

Please review my comments with careful consideration, and consider
establishing a public forum to further explore these considerations.

Thank you!

Brad Allen
5524 Baker Dr.
The Colony, TX 75056

