
From: Timothy Flynn [e-mail redacted]  
Sent: Monday, September 27, 2010 9:55 PM 
To: Bilski_Guidance 
Subject: Request for comments regarding subject matter eligibility 

In response to the USPTO’s solicitation of public comment concerning Interim Guidance 
for Determining Subject Matter Eligibility for Process Claims in View of Bilski v. Kappos , 
as an experienced practitioner and independent developer in the field of software 
engineering I would like to offer the following comments.  These comments are intended 
as a response to the third question posed in the solicitation which I repeat here for 
reference : 

3. The decision in Bilski suggested that it might be possible to ‘‘defin[e] a 
narrower category or class of patent applications that claim to instruct how 
business should be conducted,’’ such that the category itself would be 
unpatentable as ‘‘an attempt to patent abstract ideas.’’ Bilski slip op. at 12. Do 
any such ‘‘categories’’ exist? If so, how does the category itself represent an 
‘‘attempt to patent abstract ideas?’’ 

It is my contention that there does indeed exist a broad category of patent applications 
which constitute attempts to patent abstract ideas.  Further the USPTO has made a 
practice of granting such patents over the past several years.  This is the category of 
software patents. A few specific examples of patents which fall into this category are the 
following : 

•	 Patent Number 6,711,293 Method and Apparatus for Identifying Scale Invariant 
Features in an Image and Use of Same for Locating an Object in an Image 

•	 Patent Number 5,960,411 Method and System for Placing a Purchase Order via 
a Communications Network 

•	 Patent Number 6,941,275 Music Identification System 
•	 Patent number 6,125,447 Protection Domains to Provide Security in a Computer 

System 

These patents, and many others like them represent attempts to patent abstract ideas, 
specifically mathematical algorithms and processes for manipulating abstract data.  To 
see that this is true we shall need to develop an understanding of the nature of 
abstraction.  Abstraction is one of the principle foundations on which mathematics and 
its embodiment in computer software is based. 

Let’s begin with the simplest of mathematical concepts, that of a natural number: 1, 2, 3, 
etc. Such a number represents a mathematical concept known as an equivalence 
class.  An equivalence class is a set of objects defined by some property, rule or 
condition. The number 2 represents the equivalence class of all sets which have 2 
elements. This is the fundamental operation of abstraction.  It allows us to now think in 
terms of the abstract concept 2 instead of having to consider all sets with 2 elements as 
distinct unrelated things.  The abstraction does not represent all knowledge about all 
sets with 2 elements but rather represents that property which all such sets share.   



Abstraction is a hierarchical process.  It does not stop at one level.  Rather higher level 
abstractions are built on top of lower level abstractions which are in turn constructed on 
still lower level abstractions and so on until one arrives at the level of concrete physical 
things which exist in the real world.  Such physical things are no longer abstract, but 
everything else is. 

Two other notions closely related to that of abstraction are that of concept and that of 
representation. We will take the term concept to refer to the most general thing which 
can be imagined, discussed or processed.  Concepts in and of themselves have no 
concrete physical reality in the physical world (ie. they are abstract).  In order for a 
concept to acquire some manner of existence it must be represented, ultimately in some 
concrete physical form.  When a concept exists only within the mind of a person we will 
speak of a mental representation. Though the detailed nature of such mental 
representations is not yet well understood we can assume that it involves some 
combination of dynamic electrical and chemical signals within the brain.  In order for a 
concept to enter into the shared consciousness of multiple persons it must be 
transformed into some other physical representation such as sound waves 
corresponding to some spoken utterance or photons reflected off of writing on a piece of 
paper. We will refer to this type of representation as a linguistic 
representation. Similarly in order to be processed by a computer system the concept 
must again be translated into some representation (again involving dynamic 
electromagnetic signals) which can be manipulated by the hardware of the 
computer. This we will refer to as a computational representation. 

Now in this chain of events where a concept is transformed first from a mental to a 
linguistic then finally to a computational representation the concept itself retains its 
identity. To take a specific example consider the concept whose linguistic 
representation is given by the word dog. In the brain this concept is represented through 
some set of neural signals.  When spoken it is represented by vibrations of gas 
molecules and when stored in computer memory it is represented by a collection of 
switch states which represent the sequence of numbers 100, 111, 103 in base 2 (these 
numbers represent the encoding of the characters d, o and g in the most commonly 
used character encoding).  Despite the great dissimilarity between these 3 physical 
representations, they all refer to the same concept.  This is the essence of 
abstraction.  We agree through some convention that these 3 representations actually 
refer to the same abstract concept. 

A very important point to understand is that such abstractions do not have meaning 
solely through some human caprice or convention.  Rather mathematics allows rigorous 
statements to be made about such abstractions which can give them a sort of reality 
which reminds us of certain aspects of physical reality while retaining significant 
differences with respect to that domain.  

One such rigorous mathematical statement or theorem which has proved to be of the 
utmost importance to the development of digital computers holds (stated informally) that 
there exists a certain class of mathematical objects, known as Universal Turing 
Machines (UTM’s), which possess the property of  being able to perform any 
computation when provided with the appropriate set of instructions.  It is possible to 
construct many different physical representations of these UTM’s.  In other words there 
exist many physical systems which when configured with the appropriate set of initial 



 

 

conditions and assuming an appropriate mapping between physical variables and 
mathematical objects are able to simulate the behavior of UTM’s and hence perform any 
computation which can be performed  (provided the size of the problem does not exceed 
the memory capacity of the physical system).  One such physical system is the CPU of a 
modern computer. The role of a computer is therefore not to be a physical machine as 
such but rather to be a physical representation of a mathematical abstraction. 

Computer software constitutes the sets of instructions which are needed to allow 
computer hardware to perform any computation.  This software, being an abstract 
concept, also exists in different forms or representations.  At one level of abstraction it is 
a sequence of numbers which when fed into the computer cause it to perform the 
desired computation. This representation is that of machine executable object 
code. Programmers rarely deal with this representation.  Instead they create software 
using a language which, though its meaning is rigorously defined, uses common English 
words and punctuation to represent the instructions which, after an appropriate change 
of representation, will be fed to the computer.  This representation, known is source 
code, is thus a much more abstract representation of the already abstract object code 
representation. At this level we also see that a computer program is nothing more than 
a set of instructions which could, in principle, be performed by a human being with pencil 
and paper. 

It is therefore clear that any computer software is an abstract mathematical concept and 
hence, since an idea is nothing more than the mental representation of a concept, an 
abstract idea. 

In light of this argument one is left to wonder how there could be such disagreement on 
the abstract nature of computer software.  I think the misunderstanding can be traced to 
several causes.  First the subject matter of mathematics is not always understood to 
encompass the totality of all abstractions.  People often think of mathematics as being 
limited to the study of numbers and geometry when in reality it is that of abstract 
concepts. Mathematics should not be distinguished from other forms of abstract human 
reasoning on the basis of its subject matter but rather on the basis of the rigour that it 
affords. This definition is not arbitrary for any attempt to limit the subject matter of 
mathematics to certain classes of abstractions fails because mathematical statements 
about the allowed subset are found to imply equally rigorous statements about a larger 
set of abstractions once appropriate concept mappings are defined.  This misconception 
has led some to deny the fact that all computer programs are in fact mathematical 
objects. 

Another source of error is that to the uninformed computer software does not seem 
abstract. As I write these lines I am interacting with a software program which seems 
very real to me.  It possesses a quality of predictability and definiteness similar to that 
possessed by real physical things.  This predictability is however not the result of the 
software being a real physical thing but rather of the rigorous nature of mathematical 
reasoning on which the program, as an abstract mathematical object, is based. 

Timothy G. Flynn 
Endicott, NY 


