
From: Eric Johnson [e-mail redacted]
Sent: Monday, September 27, 2010 3:11 PM
To: Bilski_Guidance
Subject: Bilski guidance - eliminate or reduce software patents

To whom it may concern,

It has come to my attention that you're soliciting opinions as to
guidance you might suggest in the wake of the Bilski decision from
the Supreme Court. I'll state up front that these are my personal
opinions, and not those of my employer, TIBCO Software Inc [2].

As a software developer of over two decades, I've been dealing with
software patents for quite some time now. As part of my first full-time
job as a developer, back in 1992, I put my name on a software patent,
which eventually issued [1]. Now, I'm a member of my company's
"patent committee" which decides whether or not we should
encourage employees to pursue particular patents, and have been
involved in assessing the concerns around a number of situations
where third-parties have alleged that we've infringed our patents.

My conclusion? In all cases, this has been an enormous waste of
time.
The efforts to create patents have not contributed to either me, or any
of my co-workers trying harder to making any of the software I've
been involved in more innovative. The third party allegations (that
I've
seen) have been either baseless, or readily interpretable via any
perspective, due to the arbitrary and abstract nature of most
computer technology. In one case, I determined that a third-party
allegation of infringement was completely undermined by an equally
valid patent issued by the USPTO which would serve as prior art for
the salient areas of alleged infringement. And finally, my company
has specifically banned us from actually looking at patents, due to the
possibility of treble damages. This last point, of course, completely
undermines the notion that patents are furthering the advancement of
the art. All we've done, it seems, is funnel money to lawyers. An
innovation tax, if you will.

What makes software patents particularly problematic is that in
software it doesn't matter if you call something a "Chair", or a "Car" -
what matters is that for the intended purpose, the "objects" share the
same salient details. Since the field changes so rapidly, we don't
tend to have common terminology for well-agreed upon concepts.
And, unlike the physical world, every aspect of an "object" in a
computer is in turn itself abstract. This makes it impossible for me to
look at a patent and recognize whether or not the "chair" in a patent is
the same as my "car" in my product, unless I can do a point-by-point
comparison of the salient details of said objects, whereas this
question is relatively easy to assess - in most cases - in the physical
world. Since the salient details suffer from the *same* constraint,
doing this recursive analysis, as to whether "chair" and "car" are the
same - for a particular context - is a herculean or even impossible
task.

If you look at some of the programming languages currently all the
rage
- such as Python [3] or Ruby [4] you'll notice that they all share a
characteristic known as "duck-typing" [5]. This means that it doesn't
actually matter what you say something "is", all that matters is what it
"does", and since you can change what it "does" by changing the
implementations of what an object depends upon, everything, it turns
out is virtual.

If software patents are allowed at all (and I don't think they should be),
about the only circumstances I can imagine they would work:
* relate to software for particular-purpose machines that actually

interact with the world - such as manufacturing equipment or other
robotic technology, and only as part of a larger patent. It is not
sufficient to display data to the screen, or send/consume data from a
network.
* the software part of a patent should be self-executing - that is the

software part of a patent should be demonstrably implemented *in
code* as part of the patent (note that, as per previous point, the
software should only be a part of the patent).

To the extent that I can go to the store, buy a computer (or
programmable phone!) and download software onto that machine,
what that program does ought not be patentable. It is already

covered by copyright law, and having *two* legal frameworks
covering the same code makes everyone's life much more difficult. It
is just bits in, bits out, and that, fundamentally, comes down to math.

A note about this notion of self-execution. If the *code* is actually
demonstrated, then it becomes dramatically easier to find prior art,
and/or distinguish from the prior art by highlighting the differences
from existing patents. It also makes it easier to understand a fairly
fundamental point - the actual scope of a claim. And of course, the
question of whether or not something can actually be "practiced"
would be immediately clear by the existence of functioning software.
Since software can be rendered in source code form, it is kind of
shocking to me that this has not been required up until now.

My conclusion? Either don't allow software patents at all, or if you do
allow them, require that code be included, and that the code doesn't
actually perform the patent unless coupled with a specific physical
device that manipulates physical objects in the world around it, such
as a robot.

Sincerely,

Eric E. Johnson
6732 Vicksburg Pl.
Stockton, CA 95207

References:

[1]
http://patft1.uspto.gov/netacgi/nph-
Parser?Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtm
l%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=5,867,150.PN.&OS=
PN/5,867,150&RS=PN/5,867,150
[2] http://www.tibco.com/
[3] http://www.python.org/
[4] http://www.ruby-lang.org/en/
[5] http://en.wikipedia.org/wiki/Duck_typing

http://patft1.uspto.gov/netacgi/nph-
http://www.tibco.com/
http://www.python.org/
http://www.ruby-lang.org/en/
http://en.wikipedia.org/wiki/Duck_typing

