
From: Shawn Rutledge [e-mail redacted]
Sent: Monday, September 27, 2010 4:05 PM
To: Bilski_Guidance 
Cc: [e-mail redacted]
Subject: comments regarding new guidance for patent applications 

I'm writing because of the request for comments regarding guidance
about which patent applications are considered acceptable. I'm a 
software engineer, and have always thought that software patents are a
quagmire, a restriction of freedom with no benefit. 

Software patents threaten to take away our ability to control the
devices that now exert such strong influence on our personal freedoms,
including how we interact with each other. Now that computers are
near-ubiquitous, it's easier than ever for an individual to create or
modify software to perform the specific tasks they want done -- and
more important than ever that they be able to do so. But a single
software patent can put up an insurmountable, and unjustifiable, legal
hurdle for many would-be developers to freely distribute whatever
modifications they may invent. For such developers, often there may
not be any profit motive... it's simply a matter of making
improvements which are useful to people, or fixing things which are
broken or which hinder the usefulness of a device. 

In addition the very fact that software patents exist becomes an extra
burden for companies. They are like blunt force weapons in that large
companies focus on accumulating a portfolio of patents that they can
use as the basis for lawsuits against competitors. The lawsuits in 
many cases are frivolous, because the USPTO has not set the bar high
enough for patentability, so it is possible for companies to patent a
lot of minor developments which do not significantly advance the state
of the art. Then they use those patents as a shield: if you sue us we
can sue you too. If you compete too much maybe we will sue anyway,
just because we can, and we can use the money. Or heck, come to think
of it we can use the money anyway, so let's just sue everybody.
Consequently this shield has a chilling effect on startups which do
not have a counter-portfolio of silly patents that they can use for
counter-suing, and even more of a chilling effect on free software
developers who have no profit motive, but just want to use the
"invention" anyway (which in some cases is so obvious that it can be
re-invented by anyone with some experience). And any company or
individual who participates is wasting energy and manpower and
resources just on the legal process rather than in actually doing
something useful. So this is the sense in which I argue that the very
existence of software patents becomes a burden borne by everyone who
wishes to participate in software engineering. 

Then there is the matter of the 20 year maximum validity. That is way
too long, but at least we are ensured that 20 years after an
invention, it will be able to be used freely. This pattern has
actually occurred often enough: for example because of the zip
algorithm patent, and because Unisys (which had no other significant
revenue anymore, having become an ailing dinosaur by that point in
time) had become a patent troll, we saw a transition away from .gif
images on the web. There was nothing wrong with GIF, and the
replacement PNG format is nevertheless superior in some ways, but a
lot of manpower was squandered in the mad rush to replace all of the 



GIF images with PNGs before Unisys got around to suing in any
particular instance where the suit was possible. Now, after all of
that, it's finally moot because thank goodness that stupid patent has
finally expired. 20 years after the invention we are finally free to
use GIF (and hardly anybody cares because PNG is superior anyway).
The speed of software innovation is such that 20 years is much worse
than, say, 5 years - this obstacle of not being able to use an
invention (which in some cases can hardly even be called an
"invention" at all) will be there from cradle to grave, because in 20
years it's no longer relevant. But I would argue further that even 1
year is too long, because on the whole, software patents are a drag on
innovation. 

The job of the patent office was intended to encourage innovation by
1) encouraging the publishing of inventions, as opposed to keeping
them as trade secrets 2) giving the inventor a temporary short-term
monopoly as a reward for the publishing, to help the inventor to
entrench his profits before the competition catches up. But instead 
what we see is that publishing is not a problem anymore with the
internet, and with the free software movement - most of the
interesting new ideas get published anyway, as long as the law allows.
The existence of patents becomes an obstacle to publishing further
instantiations of new ideas, beyond the patent itself. If there was 
no patent, the new idea would be used over and over again in free
software which by its very nature is being published. As for the 
monopoly, 20 years is way too long as I have mentioned above - often
the invention will be obsolete before it can be used. 

Another problem with patents in general is that licensing is not
mandatory. If an inventor wants to patent something and then refuse
to license it, he's free to do so. He can even subsist merely on
lawsuits if he chooses. He can block progress completely on that
front, and still line his own pockets, while clogging up the legal
system too. This antisocial behavior is a drag on innovation, and
really needs to be stopped - in every field ideally, but in the "soft"
fields most of all, where progress is so much faster than it was
during the industrial revolution. 

The Supreme Court of the United States has never ruled in favor of the
patentability of software. Their decision in Bilski v. Kappos further
demonstrates that they expect the boundaries of patent eligibility to
be drawn more narrowly than they commonly were at the case's outset.
The primary point of the decision is that the
machine-or-transformation test should not be the sole test for drawing
those boundaries. The USPTO can, and should, exclude software from
patent eligibility on other legal grounds: because software consists
only of mathematics, which is not patentable, and the combination of
such software with a general-purpose computer is obvious. 


