

‐‐‐‐‐Original Message‐‐‐‐‐
From: Pamela Jones
Sent: Sunday, February 10, 2013 12:42 PM
To: SoftwareRoundtable2013
Subject: Groklaw's Comment to Topic 1 (improving clarity of claim boundaries that define the scope of
patent protection for claims that use functional language)

Gentlemen:

Thank you for expressing a desire to work more closely with the software community. Groklaw
represents a large chunk of the software
community, being a membership‐produced journalistic website, one
that covers legal events of particular interest to the technical community, especially to Free Software
and Open Source software developers.

We are applying open‐source principles to research and journalism to the extent that they apply. Our
community us predominantly made up of software developers, but our membership includes those
with a technical background in other fields, including mathematicians and
physicists, CEOs of startups, developers of apps for mobiles, others
with legal and paralegal training, as well as journalists, educators, and many end users who care enough
about operating systems to want to volunteer to make Groklaw able to report effectively on patents,
which we have been doing for a decade.

So, when we saw your request for comments on Topic 1, on how to improve clarity of claim boundaries
that define the scope of patent protection for claims that use functional language, naturally we wanted
to respond. I attach a copy of our comment, which was written by many members as a group work, and
then opening up the draft to the world for their comments. By incorporating all the suggestions and
comments from both sources, I believe it now adequately reflects widely held beliefs in the software
developer community about means plus function claiming and some ways to improve them. We hope
you find it helpful.

Pamela Jones
Founder and Co‐Editor, Groklaw
http://www.groklaw.net

Groklaw's Response to the USPTO on the First Topic
Establishing Clear Boundaries for Claims That Use Functional Language

The USPTO has launched a Software Partnership initiative to enhance the quality of patents. It has
invited the public to comment on three topics. This is the response of Groklaw to Topic 1,
“Establishing Clear Boundaries for Claims That Use Functional Language”.

Summary of the response

Claims on the functions of software without an accompanying algorithm result in granting rights to
inventions the patentee has not invented.

This view is similar to a legal analysis by Mark Lemley.1 Lemley argues based on legal
considerations; Groklaw reaches this conclusion on technical grounds.

The functions of software should always be explicitly accompanied by a corresponding algorithm
unless the algorithm is known from the prior art. Similarly, algorithms should be detailed up to the
point where there is prior art for the implementation of all elements used to describe the individual
steps. This rule should be applicable to all forms of claiming because the problems of functional
claiming without an accompanying algorithm occur no matter how the claim is drafted.

We disagree with Lemley when he says functional claiming is the source of most of the ills of
software patents. We believe that patents on abstract ideas are also problematic. It is possible to
write claims on abstract ideas using very specific terms, so invalidating vague or overly broad
patents will not solve the problems caused by claims on abstract ideas.

This response is divided in three parts followed by an addendum providing a supplementary
comment:

●	 A. Permitting recitations of software functions without specifying their accompanying
algorithms leads to grants of rights to inventions the patentee has not invented.

●	 B. Algorithms should be detailed up to the point where all functional elements have
corresponding algorithms which are either explicitly disclosed or known in the computer
programming art.

●	 C. Providing sufficient structure for functional language will reduce needless litigation but is
not a substitute to section 101 subject matter analysis.

●	 Addendum. Observations on the practical ineffectiveness of patent disclosure in promoting
innovation in computer programing.

A. Permitting recitations of software functions without specifying their
�
accompanying algorithms leads to grants of rights to inventions the patentee has not
�

invented.
�

This response documents this issue from the point of view of the mathematical theory underlying
computer science. It shows why the problems of functional claiming occur no matter which form of
claim language is used.

The key concept is the distinction mathematicians draw between a function and an algorithm.
Hartley Rogers explains:2 (emphasis in the original):

It is, of course, important to distinguish between the notion of algorithm, i.e., procedure,
and the notion of function computable by algorithm, i.e., mapping yielded by procedure.
The same function may have several different algorithms.

1 See Mark Lemley, Software Patents and the Return of Functional Claiming
2 See Rogers, Hartley Jr., Theory of Recursive Functions and Effective Computability, The MIT

Press, 1987 pp. 1-2

A mathematical function is a correspondence between one or more input values and a
corresponding output value. For example the function of doubling a number associates 1 with 2, 2
with 4, 3 with 6 etc. Non-numerical functions also exist. A function is not a process. There is no
requirement that the function must be computed in a specific manner. All methods of computation
which produce the same output from the same input compute the same function.

A method for computing the function is called an “algorithm”. There is a series of steps to be
executed starting with the input and ending when the output is produced. The ordinary procedures
of arithmetic for adding and multiplying numbers using pencil and paper are examples of
algorithms. In mathematics, nonnumerical algorithms for processing nonnumerical data also exist.
Despite the similarly sounding words, a software function is not the same thing as a mathematical
function. However the two concepts are closely related. If we look at the principles of mathematics
underlying computer programming the functions of software are described with mathematical
functions.3 The methods used to perform the functions of software are implemented using
mathematical algorithms. As indicated by Hartley Rogers, the same function may have several
algorithms. For example we may double a number by multiplying it by 2, or we may add it to itself.
Both ways the number is doubled.

Another example of a function with many algorithm for it is sorting. A sorting function takes as
input a list or array of values in some random order and its output is a list or array of the same
values sorted according to some predetermined order. A large number of sorting algorithms is
known.

When the algorithm for a software function is not provided, the claim will read on all
algorithms for this function. This implies the claim may read on methods the patentee has not
invented. This shows the mathematical principles underlying computer science are supporting
Lemley's description of the problems caused by functional claiming.4:

While experienced patent lawyers today generally avoid writing their patent claims in
means-plus-function format, software patentees have increasingly been claiming to own the
function of their program itself, not merely the particular way they achieved that goal. Both
because of the nature of computer programming and because of the way the means-plus-
function claim rules have been interpreted by the Federal Circuit, those patentees have
been able to write those broad functional claims without being subject to the limitations of
section 112(f). They have regained the ability to claim ownership not of what they built, but
of what it does. They claim to own the function itself.

There is another problem with functional claiming that Lemley has not identified. The same
algorithm may be used to compute multiple functions. For example, an algorithm for multiplication
may double, triple or quadruple a number. Several well-known algorithms in computer science are
routinely used in such a versatile manner. An example is an algorithm for recognizing regular
expressions, which may be used for a wide range of text processing functions. Therefore it is
possible that a software function in a claim is actually an obvious use of an old algorithm. This
circumstance will be easier to identify if we require that a software function is accompanied with
the corresponding algorithm.

And there is still another problem with functional claiming. Sometimes the exact same algorithm
implements multiple software functions when applied to the same input. An example may be a
routine to draw the shape of a three-dimensional parabolic surface. This routine may be mentioned
in a claim as a method for drawing the form of different physical devices, like radio-frequency
antennas, mirrors for telescope or directional microphones. The mention of the object will make
each of these claims sound like they are reciting different functions, but in reality the objects may
have the same shape and dimensions. Then exactly the same code is used on the same numeric

3 See for instance textbooks on denotational semantics for one method of writing such
descriptions. An example of such textbook is Stoy, Joseph E., Denotational Semantics: The
Scott-Strachey Approach to Programming Language Theory, MIT Press, First Paperback Edition.

4 See Lemley supra, pp.2-3.

data. Nothing new has been invented. Once again this circumstance will be easier to identify if we
require that a software function is accompanied with the corresponding algorithm.

There is a fourth problem with functional claiming. The knowledge of the functions of the software
is not a guarantee that the patentee has a working algorithm in hand. Some functions are
notoriously hard to program. For example cryptography relies heavily on the difficulty of finding
algorithms for large integer factorization that are fast enough to be used in practice. The extreme
cases are the undecidable problems. These are functions for which we have a mathematical proof
that no corresponding algorithm can possibly exist. A patent may in theory recite a function like
these, but its disclosure doesn't enable anyone to implement a corresponding algorithm. In fact,
without disclosure of a specific algorithm, one has reasonable grounds to doubt the patentee has a
practical way to implement the function claimed as his possession.

Whether the claim reads on a non-existant, new, yet to be discovered algorithm or on an obvious
use of an old algorithm, it reads on an invention the patentee has not invented. In all cases, this is
a problem.

The cause of these problems resides in part in the mathematical principles underlying computer
programming. As Lemley points out, they occur no matter which form of claim language is used. It
should not matter whether or not the claim is written in traditional 112(f) means-plus-function
format. Either way, a claim element described in functional language without the corresponding
algorithm will result in the same problem.

B. Algorithms should be detailed up to the point where all functional elements have
corresponding algorithms which are either explicitly disclosed or known in the

computer programming art.

This section addresses the degree of detail which should be required to meet the sufficient
description requirement.

For example, if a claim recites the function of adding numbers, there is no requirement to describe
a method for addition, because this method is well-known in the computer programming art. But
when a claim recites a function for which no algorithm is known in the prior art, an algorithm must
be explicitly disclosed.

An algorithm is usually described by elaborating it with an increasing degree of detail in a
hierarchical manner. The rule for sufficient description should be applied at all levels of the
hierarchy.

Here is how it would work: An algorithm is made of steps. Each step is itself described in functional
terms. Therefore each step is itself a functional element for which an algorithm must be provided.
This more granular algorithm is also made of steps described in functional terms. Algorithms for
the more granular steps must also be provided. This elaboration of steps into more granular
algorithms must continue until it is known from the prior art how to implement all individual steps.
Then the algorithms for all functional elements are either explicitly disclosed or already known.
This rule for what is sufficient structure should be applied for both purposes of enablement and
defining the boundaries of claims. Anything less permits incomplete disclosure. Also, if some steps
are allowed to be described in functional terms without disclosing a corresponding algorithm, we
just move the problems of functional claiming from the main functions of software to the functions
of individual steps. This doesn't accomplish much. Functional claiming will persist because
applicants will cleverly write patent language that uses this loophole.

C. Providing sufficient structure for functional language will reduce needless
litigation but is not a substitute to section 101 subject matter analysis.

Providing this degree of detail in the structure for functional elements will help reject vague or
overly broad patents. The approach proposed by Groklaw has an additional benefit. It should
create a presumption that any functional language recited without a corresponding algorithm is

within the prior art, otherwise the claim is invalid as indefinite. This presumption may help curtail
baseless litigation with summary judgment motions on invalidity under sections 101, 102 or 103
because there will be fewer material issues of fact that could be disputed.

This is a highly desirable result but this doesn't resolve all the problems with software patents. In
particular, Section 101 analysis is still required to determine whether a claim is drawn to an
abstract idea. For example consider a claim on a computer programmed to compute the location
of points on a non-vertical straight line in plane geometry according to the well-known formula
y=mx+b. This claim is on a method to compute the y-coordinate of a point when the x-coordinate
is known.

A computer programmed for computing the y-coordinate using a method comprising:
1.	� a step of identifying the value x of the x-coordinate, and;
2.	� a step of multiplying the x-coordinate with the slope of the line m to obtain an

intermediate result mx, and;
3.	� a step of adding the intermediate result mx with the value b of the y-coordinate at

the origin to obtain the value y of the y-coordinate.

This is clearly a claim on an abstract mathematical algorithm. This claim is not vague and it is not
overly broad. It doesn't use functional claiming. It is invalid because it is abstract. It is also invalid
because the formula is old, but how about similar claims where the formula is new and
nonobvious? They can only be invalidated using section 101.

This observation is typical. In mathematics an algorithm must be given at a great degree of
specificity, otherwise it is not an algorithm in the sense mathematicians give to this term. Boolos,
Burgess and Jeffrey explain:5:

The instruction must be completely definite and explicit. They should tell you at each step
what to do, not tell you to go ask someone else what to do, or to figure out for yourself
what to do: the instructions should require no external source of information, and should
require no ingenuity to execute, so that one might hope to automate the process of
applying the rules, and have it performed by some mechanical device.

Any attempt to equate the abstract idea exception with a prohibition of vague or overly broad
claims is inconsistent with the notion that mathematical algorithms *are* abstract ideas. Also we
believe that many non-mathematical abstract ideas may be described in specific terms.
Software development is an incremental activity. A complex software may use thousands of ideas.
Each of these ideas is a basic building block which could be used in a large number of different
pieces of software. Each of these ideas may be the subject matter of one or more patents. Patents
on abstract ideas are as damaging as patents on vague or overly broad claims.

Lemley advocates to take section 112(f) seriously. He argues that vague and overly broad claims
resulting from functional claiming are the cause of most if not all the ills affecting software
patents.6 (footnote omitted)

It is broad functional claiming of software inventions that is arguably responsible for most of
the well-recognized problems with software patents. Writing software can surely be an
inventive act, and not all new programs or programming techniques are obvious to outside
observers. So some software inventions surely qualify for patent protection. Even if there
are too many software patents, the patent thicket and patent troll problems won’t go away
if we simply reduce the number of software patents somewhat. And while the lack of clear
boundaries is a very real problem, the most important problem a product-making software
company faces today is not suits over claims with unclear boundaries but suits over claims
that purport to cover any possible way of achieving a goal. The fact that there are lots of

5 See Boolos George S., Burgess, John P., Jeffrey, Richard C., Computability and Logic, Fifth
Edition, Cambridge University Press, 2007, page 23.

6 See Lemley, supra, page 3.

patents with broad claims purporting to cover those goals creates a patent thicket. And
while the breadth of those claims should (and does) make them easier to invalidate, the
legal deck is stacked against companies who seek to invalidate overbroad patent claims.

While Groklaw agrees that functional claiming is indeed a serious problem that must be fixed it is
our position is that claims on abstract ideas are also problematic. If the patent system successfully
curtails the use of vague and overbroad claims, patent trolls may shift their activity to claims
drawn to abstract ideas. A patent on an idea which may potentially be widely used may be well-
suited to patent trolling. Please recall that non-practicing entities may be profitable even when
their targets don't infringe on claims. They only need to threaten litigation to extract undeserved
settlements. Their business model doesn't require vagueness and breadth of claiming.

Patents on abstract ideas may also be used for other forms of abuse of the patent system, like
building patent thickets that impede innovation for anti-competitive purposes.

Addendum. Observations on the practical ineffectiveness of patent disclosure
in promoting innovation in computer programing.

We wish to bring to the USPTO's attention some observations on how patent disclosure helps or
hinders innovation. These observations should be seen in light of the patent quid pro quo.
Patentees are granted exclusive rights for a limited time in exchange for the disclosure of the
invention. In the case of software patents, the quid pro quo doesn't work in practice according to
the theory, with the result that patent law's ability to promote innovation in software is at least
impaired. In our view, software patents are toxic to innovation.

Disclosure is intended to enable a person with ordinary skills in the art to make and use the
invention. Most developers are not good at reading legal language, and patents seem to be written
so as to obfuscate what the patent actually covers, so for best results, disclosure should be written
in a language developers can read. Software programmers would welcome a greater use of textual
and graphical notation systems known in the art, such as C-like pseudo-code or XML-like schemas
for textual notation and Unified Modeling Language (UML) for graphical notation. We see the
request for comments on topic 3 as a positive development.

For developers the preferred form of disclosure is source code for well-written working programs.7

Please note that the patent system is not the only incentive for disclosure available in the market.
Parties skilled in managing a relationship with a community of developers will use an open
development model where information is freely shared. One example is the free and open source
(FOSS) development model. Another example is the IETF standard development model.

In the FOSS development model, disclosure of the source of working programs is the norm.
Programmers need to read, use, modify and distribute the software in order to contribute
modifications. For many businesses, this is R&D which is available at no monetary cost. From the
point of view of programmers, this incentive leads to a superior form of disclosure when compared
to the patent system.

Examples of software inventions developed and disclosed in this manner are the Perl and Python
programming languages, the Linux operating system kernel, and the Coq proof assistant.

The IETF standard development process is different. They write detailed specification documents
called RFCs (Requests for Comments). These documents are shared and updated until the
participants generally agree these specifications are proven to work with actual implementations.8

This process has been summarized with the phrase “We reject: kings, presidents, and voting. We

7 The program must be well-written. Obfuscated code is useless.
8 See RFC 2026 for the current version of the RFC development process. RFC2555 is an historic

account describing how the RFC process has been used to invent and disclose the core Internet
protocols.

believe in: rough consensus and running code.” 9 Although this development process doesn't
explicitly require the disclosure of source code the publication of reference implementations is a
common practice.10 It is required that a proposed standard must have two independent
interoperable working implementations in order to be adopted.11

All the core communication protocols of the Internet are developed and disclosed in this manner.

Other inventions which have been disclosed in source code form are the web browser and the web
12 server.

If the goal is to maximize the ability of the patent system to promote innovation, then the source
code of a well- written working program should be a required element of disclosure. Programmers
are used to source code disclosure from sources other than patents. They will compare the quality
of the knowledge they receive from patents with these other sources and they will decide whether
patents are worth searching and reading on this basis. Should developers determine patents are
not useful enough to be worth the trouble they will not read them, and this undermines the very
purpose of the patent quid pro quo. In this scenario the disclosure function of patents is
ineffective.

Unfortunately current case law does not favor a strong form of disclosure. For example, Fonar
Corporation v. General Electric Corporation:

As a general rule, where software constitutes part of a best mode of carrying out an
invention, description of such a best mode is satisfied by a disclosure of the functions of the
software. This is because, normally, writing code for such software is within the skill of the
art, not requiring undue experimentation, once its functions have been disclosed. It is well
established that what is within the skill of the art need not be disclosed to satisfy the best
mode requirement as long as that mode is described. Stating the functions of the best
mode software satisfies that description test. We have so held previously and we so hold
today. Thus, flow charts or source code listings are not a requirement for adequately
disclosing the functions of software.

See also Northern Telecom v. Datapoint Corporation:

The computer language is not a conjuration of some black art, it is simply a highly
structured language The conversion of a complete thought (as expressed in English
and mathematics, i.e. the known input, the desired output, the mathematical expressions
needed and the methods of using those expressions) into a language a machine
understands is necessarily a mere clerical function to a skilled programmer.

These cases place patent practice at the low end of the range of possible degrees of disclosure.
Not only source code is not disclosed, but the algorithm is not available either. Only the functions

9	� See Andrew L. Russell, Rough Consensus and Running Code and the Internet-OSI Standards War
(PDF).

10An example of a reference implementation is found in RFC1321 Appendix A. Reference
implementations may also be incorporated by reference. For example, RFC 5905 includes the
reference, “This document includes material from [ref9], which contains flow charts and
equations unsuited for RFC format. There is much additional information in [ref7], including an
extensive technical analysis and performance assessment of the protocol and algorithms in this
document. The reference implementation is available at www.ntp.org.” This same RFC 5905
also includes a skeleton program with code segments in appendix A.

11See RFC 2026 supra, section 4.1.2: A specification from which at least two independent and
interoperable implementations from different code bases have been developed, and for which
sufficient successful operational experience has been obtained, may be elevated to the "Draft
Standard" level.

12The W3C consortium hosts the first web page ever published. It includes instruction on how to
obtain the source code for web browsers and web servers.

of the software are required to be provided.

From the perspective of a programmer, these cases eviscerate the usefulness of disclosure. The
functions of most software inventions can be defined after a few brainstorming sessions. Turning
these functions into a working implementation is still a lot of hard work. When only the functions
are known, the programmer is still required to do the bulk of this work.13 The functions of existing
software can usually be seen just by watching the program in action. Developers may watch over
the shoulder of a user, or they may inspect the computer internals with debugging tools.
Disclosure of the algorithm should be mandatory. Disclosing the functions of software without the
corresponding algorithm doesn't disclose any trade secret. Therefore the patent quid pro quo is
not actually implemented.

At a strict minimum, the functions of software must always be accompanied by the disclosure of
the algorithm unless the algorithm is known from the prior art. This will make the disclosure
requirements consistent with the requirements of section 112(f) as we propose in sections A and B
of this comment. But for best results source code should be required as well.

The lack of the algorithm and source code are not the only problems with Fonar and Northern
Telecom. From a programmer's point of view, these decisions are factually erroneous.14 It is not
true that “normally, writing code for such software is within the skill of the art, not requiring undue
experimentation, once its functions have been disclosed.” Sometimes the algorithm can be easily
derived from the disclosure of the software functions and sometimes it can't. This depends on
which functions are recited in the patent.

An example of algorithm which is easily derived from the disclosed functions is an arithmetical
calculation corresponding to the disclosure of a suitably chosen mathematical formula. Someone
with sufficient knowledge of mathematics can figure out the calculation to be performed just by
looking at the formula.

Examples of algorithms which cannot be easily derived from a statement of the functions are large
integer factorization and undecidable problems. These example were mentioned above. No
practical algorithm for large integer factorization is known.15 Disclosing large integer factorization
as a function doesn't enable anyone to write a working program because this is a famous unsolved
problem. Once a solution to this problem is found, if ever, then this kind of disclosure may refer to
this discovery as prior art. For the time being there is no such prior art.

If an undecidable problem is disclosed as the functions of software, then the situation is totally
hopeless. No algorithm at all may ever be written for this function because we have a
mathematical proof that none exist.16 In this case no invention corresponding to this so-called
disclosure can ever be made.

The proper test for when the disclosure of the functions suffices to let a programmer write the
software is whether the corresponding algorithm is obvious to a person having ordinary skills in
the art once the functions are known. If the algorithm is not obvious, then it is not within the
ordinary skills in the art to write this program. We are in presence of one of the functions for which
algorithms are hard or perhaps impossible to find. The reader of the patent is forced to reinvent

13For the sake of making a comparison, we note that this obligation does not follow from the
disclosure commonly available from collaborative development processes. In the case of FOSS,
the programmer has access to the source code of a working program he can immediately use.
In the case of IETF the programmer can usually refer to a reference implementation. This is why
the FOSS and IETF development models lead to a superior form of disclosure.

14We are not presenting an argument for overruling these cases. We are just noting the errors.
15Some algorithms that work for some (but not all) large integers have been found. These

algorithms partially solve the problem. Other algorithms that work for all integers are known but
they are way too slow for practical use. Finally an algorithm is known for quantum computer
that should be practical to use but we don't know yet how the build the computer able to run it.

16Examples of undecidable problems are found at this page on the wikipedia.

from scratch an undisclosed portion of the invention. This is yet another reason why we believe
that the best procedure is to leave the algorithm unspecified only when it is known from the prior
art, as indicated in section B of this response.

There is still another problem with disclosure. For a computer programmer reading patents is
legally dangerous. He risks becoming liable for treble damages for willful infringement. Many
computer programmers don't read patents for this reason. The whole point of disclosure is to
enable skilled artisans to reproduce the invention. This cannot happen with software when
computer programmers don't read patents.

There is a deeper reason behind this situation. Mark Lemley points out how difficult it is for job
creating corporations using or selling actual software products to clear all software patent rights
on their own products. See Lemley supra, page 24. (footnotes omitted)

Because computer products tend to involve complex, multi-component technology, any
given product is potentially subject to a large number of patents. A few examples: 3G
wireless technology was subject to more than 7000 claimed “essential” patents as of 2004;
the number is doubtless much higher now. WiFi is subject to hundreds and probably
thousands of claimed essential patents. And the problem is even worse than these
numbers suggest, since both 3G wireless technology and WiFi are not themselves products
but merely components that must be integrated into a final product. Some industry experts
have estimated that 250,000 patents go into a modern smartphone. Even nominally open-
source technologies may turn out to be subject to hundreds or thousands of patents. The
result is what Carl Shapiro has called a “patent thicket” – a complex of overlapping patent
rights that simply involves too many rights to cut through.

A software developer can't clear all patent rights to his own software because there is no practical
way to do so. This is true of all non trivial software. A software developer must choose between
taking the risk of being sued by some rights holder or give up developing. If he chooses to take the
risk of being sued then any action that exposes him to treble damages is recklessly increasing this
risk. In these circumstances not reading patents is a sensible decision. Many software developers
report that their employers forbid them from reading patents precisely for this reason.

The inability to clear all patent rights on actual software makes the patent system toxic to all job-
creating organizations and individuals using and writing software. These parties can never be
assured they own all rights to their own software properties. This impacts individual developers,
communities like FOSS projects, nonprofit and commercial entities. Patents are rights to exclude. If
all patent rights are not cleared, then any rights holder may sue and seek to enforce his exclusive
rights. All software developers and users must live with this sword of Damocles constantly hanging
over their head. The only practical alternative is to stop using and developing software because
clearing all the rights is not a realistic option. This is a much worse problem than ineffective
disclosure. Crippling an entire industry with the inability to clear all rights to one's own property is
harmful to innovation and it actively promotes litigation.

This is not a situation that can be fixed through requiring better disclosure. Even in a best case
scenario where every patent fully discloses all aspects of the invention in the most informative
manner, this information will never be valuable enough to outweigh the costs of being found liable
for treble damages. The monetary damages at risk are just too high. The disclosure function of
patents will remain ineffective for as long as this situation persists. The ideal solution would be to
enable software owners to clear all rights to their own properties.

In conclusion, the USPTO should examine how disclosure actually works in practice and compare
their findings with how legal theory says it should work. Gaps will be found that damage the ability
of software patents to promote innovation. Some of the gaps make software patents actually
harmful to innovation. These gaps must be corrected. For best results the USPTO should consider
requiring the source code of a well-written working program as part of the disclosure.

