CPC

COOPERATIVE PATENT CLASSIFICATION

H

H02

H02M

Abstract

APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF (transformers H01F; dynamo-electric converters H02K 47/00; controlling transformers, reactors or choke coils, control or regulation of electric motors, generators or dynamo-electric converters $\underline{\mathrm{H} 02 \mathrm{P}}$)

NOTES

1. This subclass covers only circuits or apparatus for the conversion of electric power, or arrangements for control or regulation of such circuits or apparatus. The electrotechnical elements employed are dealt within the appropriate subclasses, e.g. inductors, transformers $\underline{H 01 F}$, capacitors, electrolytic rectifiers $\underline{H 01 G}$, mercury rectifying or other discharge tubes $\underline{H 01 \mathrm{~J}}$, semiconductor devices H01L, H10 impedance networks or resonant circuit not primarily concerned with the transfer of electric power $\underline{\underline{H} 03 \mathrm{H}}$.
2. In this subclass, the following term is used with the meaning indicated:

- "conversion", in respect of an electric variable, e.g. voltage or current, means the change of one or more of the parameters of the variable, e.g. amplitude, frequency, phase, polarity.

WARNINGS

1. The following IPC groups are not in the CPC scheme. The subject matter for these IPC groups is classified in the following CPC groups: H02M 9/00 H02M 9/02 H02M 9/04 covered by

H03K 3/53 covered by H03K 3/53 covered by H03K 3/53 H02M 9/06 covered by

H03K 3/53
2. In this subclass non-limiting references (in the sense of paragraph 39 of the Guide to the IPC) may still be displayed in the scheme.

Details of apparatus for conversion

- \{Details of control, feedback or regulation circuits\}
- . \{Arrangements for supplying an adequate voltage to the control circuit of converters \}
- . \{Devices or circuits for detecting current in a converter\}
. . \{Control circuits using digital or numerical techniques (in DC/DC converters H02M 3/157, H02M 3/33515; in DC-AC converters H02M 7/53873) \}
- . \{Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters $\}$
. . . \{the disturbance parameters being load current fluctuations $\}$
. . . \{the disturbance parameters being input voltage fluctuations
- . \{Arrangements for modifying reference values, feedback values or error values in the control loop of a converter\}
- . \{Circuits or arrangements for limiting the slope of switching signals, e.g. slew rate\}
- . \{Control circuits allowing low power mode operation, e.g. in standby mode\}
. . . \{using burst mode control $\}$

1/0038

1/0041
1/0043

- . \{Circuits or arrangements for suppressing, e.g. by masking incorrect turn-on or turn-off signals, e.g. due to current spikes in current mode control\}
. . \{Control circuits in which a clock signal is selectively enabled or disabled\}
- \{Converters switched with a phase shift, i.e. interleaved (non-isolated DC/DC converters H02M 3/1586) \}
. \{Converters combining the concepts of switchmode regulation and linear regulation, e.g. linear pre-regulator to switching converter, linear and switching converter in parallel, same converter or same transistor operating either in linear or switching mode $\}$
- \{Circuits or arrangements for reducing losses (using snubbers H02M 1/34) \}
. . \{Diode reverse recovery losses \}
- . \{Transistor switching losses (periodically suspending operation of switching converter in low power mode H02M 1/0035) \}
. . $\begin{aligned} & \text { - by employing soft switching techniques, } \\ & \text { i.e. commutation of transistors when applied }\end{aligned}$ voltage is zero or when current flow is zero (using an auxiliary actively switched resonant commutation circuit connected to an intermediate DC voltage or between two push-pull branches of an inverter bridge H02M 7/4811; in resonant inverters H02M 7/4815; in inverters operating from a resonant DC source H02M 7/4826) \}
- \{using discharge tubes \}
- \{Magnetic structures combining different functions, e.g. storage, filtering or transformation \}
- \{Converter structures employing plural converter units, other than for parallel operation of the units on a single load $\}$
. . \{Plural converter units in cascade (pushpull DC/DC converters with pre-regulator H02M 3/3374; DC-AC converters following a DC-DC stage including a high frequency transformer H02M 7/4807; DC-AC converters following a DC-DC conversion stage generating periodically varying voltages $\mathbf{H 0 2 M} 7 / 4826$) \}
- . \{Plural converter units whose inputs are connected in series $\}$
- . \{Plural converter units whose outputs are connected in series $\}$
- . \{Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators $\}$
- \{Converters characterised by their input or output configuration $\}$
- . \{Partially controlled bridges $\}$
- . \{adapted for receiving as input a current source\}
- . \{having two or more independently controlled outputs (for DC-DC converter with intermediate AC H02M 3/33561) $\}$
- . $\{$ wherein the output is created by adding a regulated voltage to or subtracting it from an unregulated input $\}$
- \{Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck $\}$
- \{Means for increasing hold-up time, i.e. the duration of time that a converter's output will remain within regulated limits following a loss of input power $\}$
- Circuits specially adapted for rendering nonconductive gas discharge tubes or equivalent semiconductor devices, e.g. thyratrons, thyristors
. . \{for discharge tubes $\}$
- Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
- . \{ wherein the phase of the control voltage is adjustable with reference to the AC source \}
. . . $\{$ with digital control $\}$
- . \{for the ignition at the zero crossing of the voltage or the current \}
- using a control circuit common to several phases of a multi-phase system
. . . $\{$ digitally controlled (or with digital control) $\}$
- . for the simultaneous control of series or parallel connected semiconductor devices
. . . the control signals being transmitted optically
. . . the power supply of the control circuit being connected in parallel to the main switching element (H02M 1/092 takes precedence)
- Arrangements incorporating converting means for enabling loads to be operated at will from different kinds of power supplies, e.g. from ac or dc
- Arrangements for reducing harmonics from ac input or output
- . \{Suppression of common mode voltage or current \}
- . \{using passive filters \}
- Arrangements for reducing ripples from dc input or output
. . \{using compensating arrangements (for reducing noise from the supply in transmission systems H04B 15/005) \}
. . \{using discharge tubes \}
. . using active elements
- Means for providing current step on switching, e.g. with saturable reactor
- Contact mechanisms of dynamic converters
. . incorporating collectors and brushes
- . incorporating rolling or tumbling contacts
. . incorporating cam-operated contacts
. . incorporating electromagnetically-operated vibrating contacts
. . incorporating liquid contacts
- Means for protecting converters other than automatic disconnection
. . \{Means for rapidly discharging a capacitor of the converter for protecting electrical components or for preventing electrical shock \}
- . \{with means for allowing continuous operation despite a fault, i.e. fault tolerant converters \}
- . $\{$ against abnormal temperatures $\}$
- . Snubber circuits
. . . \{Active non-dissipative snubbers \}
. . . \{Active dissipative snubbers \}
- . . \{Passive non-dissipative snubbers \}
- . . \{Passive dissipative snubbers $\}$
- Means for starting or stopping converters
- Means for preventing simultaneous conduction of switches
- . \{with means for correcting output voltage deviations introduced by the dead time \}
- Means for preventing magnetic saturation
- Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
1/4208

1/4216
$1 / 4225$

- . \{Arrangements for improving power factor of AC input $\}$
-• . \{operating from a three-phase input voltage (H02M 1/4233 takes precedence) $\}$
. . . \{using a non-isolated boost converter\}

\begin{tabular}{|c|c|c|}
\hline 1/4233 \& . . . \{using a bridge converter comprising active switches\} \& 3/125

\hline 1/4241 \& . . \{using a resonant converter\} \& 3/13

\hline 1/425 \& . . . \{using a single converter stage both for correction of AC input power factor and generation of a high frequency AC output voltage $\}$ \& $3 / 135$
$3 / 137$

$3 / 139$

\hline 1/4258 \& . . . \{using a single converter stage both for correction of AC input power factor and generation of a regulated and galvanically isolated DC output voltage (H02M 1/4241 takes precedence) \} \& $3 / 142$
$3 / 145$

\hline 1/4266 \& . . . \{using passive elements\} \&

\hline 1/4275 \& . . . \{by adding an auxiliary output voltage in series to the input $\}$ \& $$
\begin{aligned}
& 3 / 15 \\
& 3 / 155
\end{aligned}
$$

\hline 1/4283 \& . . . $\{$ by adding a controlled rectifier in parallel to a first rectifier feeding a smoothing capacitor $\}$ \& 3/1552

\hline 1/4291 \& . . . \{by using a Buck converter to switch the input current $\}$ \& 3/1555

\hline 1/44 \& . Circuits or arrangements for compensating for electromagnetic interference in converters or inverters \& 3/1557

\hline \[
$$
\begin{aligned}
& \mathbf{3 / 0 0} \\
& 3 / 003
\end{aligned}
$$

\] \& | Conversion of dc power input into dc power output |
| :--- |
| - \{Constructional details, e.g. physical layout, assembly, wiring or busbar connections\} | \& 3/156

\hline 3/005 \& - \{using Cuk converters \} \& 3/1563

\hline 3/01 \& - \{Resonant DC/DC converters \} \&

\hline 3/015 \& . . \{with means for adaptation of resonance frequency, e.g. by modification of capacitance or inductance of resonance circuit \} \& 3/1566

\hline 3/02 \& without intermediate conversion into ac \& 3/157

\hline 3/04 \& . by static converters \&

\hline 3/06 \& . . . using resistors or capacitors, e.g. potential divider \& 3/158

\hline 3/07 \& using capacitors charged and discharged alternately by semiconductor devices with control electrode \{, e.g. charge pumps\} \& $3 / 1582$
$3 / 1584$

\hline 3/071 \& \{adapted to generate a negative voltage output from a positive voltage source \} \& 3/1584

\hline 3/072 \& \{adapted to generate an output voltage whose value is lower than the input voltage $\}$ \& $3 / 1586$

$3 / 1588$

\hline 3/073 \& . \{Charge pumps of the Schenkel-type\} \& 3/1588

\hline 3/075 \& \{including a plurality of stages and two sets of clock signals, one set for the odd and one set for the even numbered stages $\}$ \& 3/16

\hline 3/076 \& \{the clock signals being boosted to a value being higher than the input voltage value \} \& $3 / 18$
$3 / 20$

\hline 3/077 \& $\{$ with parallel connected charge pump stages $\}$ \&

\hline 3/078 \& \{with means for reducing the back bias effect, i.e. the effect which causes the threshold voltage of transistors to increase as more stages are added to the converters $\}$ \& $$
\begin{aligned}
& 3 / 22 \\
& 3 / 24 \\
& 3 / 26
\end{aligned}
$$

\hline 3/08 \& . . . using discharge tubes without control electrode or semiconductor devices without control electrode \& 3/28

\hline 3/10 \& . . . using discharge tubes with control electrode or semiconductor devices with control electrode (H02M 3/07 takes precedence) \&

\hline
\end{tabular}

. . . . using devices of a thyratron or thyristor type requiring extinguishing means
. using discharge tubes only
. using semiconductor devices only
. with automatic control of output voltage or current, e.g. switching regulators
. with digital control
. including plural semiconductor devices as final control devices for a single load
using devices of a triode or transistor type requiring continuous application of a control signal
. using discharge tubes only
. using semiconductor devices only
. \{Boost converters exploiting the leakage inductance of a transformer or of an alternator as boost inductor $\}$
. \{for the generation of a regulated current to a load whose impedance is substantially inductive\}
. \{Single ended primary inductor converters [SEPIC]\} with automatic control of output voltage or current, e.g. switching regulators
. \{without using an external clock (H02M 3/158 takes precedence) \}
\{with means for compensating against rapid load changes, e.g. with auxiliary current source, with dual mode control or with inductance variation $\}$ with digital control

- with digital cortrol devices as final control devices for a single load
. \{Buck-boost converters (H02M 3/1584 takes precedence) \}
\{ with a plurality of power processing stages connected in parallel $\}$
\{switched with a phase shift, i.e. interleaved\}
\{comprising at least one synchronous rectifier element (H02M 3/1582, H02M 3/1584 take precedence) $\}$
. . by dynamic converters
. . . using capacitors or batteries which are alternately charged and discharged, e.g. charged in parallel and discharged in series
. . by combination of static with dynamic converters; by combination of dynamo-electric with other dynamic or static converters
- with intermediate conversion into ac
. . by static converters
. . . using discharge tubes without control electrode or semiconductor devices without control electrode to produce the intermediate ac
. . . using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

3/285 \{Single converters with a plurality of output stages connected in parallel (parallel operation of a plurality of converters in dc distribution networks H02J 1/10) \}	$3 / 3378$ $3 / 338$ $\{$ in a push-pull configuration of the parallel type (H02M 3/3374 takes precedence) $\}$ in a self-oscillating arrangement
3/305 using devices of a thyratron or thyristor type requiring extinguishing means	3/3381	(H02M 3/337 takes precedence)
3/31	. . . using discharge tubes only	3/3382	\{in a push-pull circuit arrangement\}
3/315	. . using semiconductor devices only	3/3384	. \{of the parallel type\}
3/3155 \{ with automatic control of the output voltage or current $\}$	3/3385 $\{$ with automatic control of output voltage or current (H02M 3/33561
3/325 using devices of a triode or a transistor type requiring continuous application of a control signal	$\begin{aligned} & 3 / 3387 \\ & 3 / 3388 \end{aligned}$	takes precedence) $\}$ $\{$ in a push-pull configuration $\}$ $\{$ of the parallel type \}
3/33	using discharge tubes only	3/34	. . by dynamic converters
$3 / 335$ $3 / 33507$. . using semiconductor devices only	3/36	. . . using mechanical parts to select progressively or to vary continuously the input potential
	output voltage or current, e.g. flyback converters (H02M 3/33561, H02M 3/33569 take precedence) \}	$3 / 38$ $3 / 40$. . . using mechanical contact-making and breaking parts to interrupt a single potential
3/33515	- \{with digital control\}		e with brushes or rollers
3/33523 \{with galvanic isolation between input and output of both the power stage and the feedback loop\}	$3 / 42$ $3 / 44$ with electromagnetically-operated vibrating contacts, e.g. chopper . . by combination of static with dynamic converters;
3/3353 \{having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched)		by combination of dynamo-electric with other dynamic or static converters
3/33538	flyback" converter\} \{of the forward type (H02M 3/3353, H02M 3/33569 take precedence) \}	5/00	Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
3/33546	. \{with automatic control of the output	5/005	. [using discharge tubes \}
	voltage or current (H02M 3/33561 takes precedence) \}		. without intermediate conversion into dc . . by static converters (controlling transformers,
3/33553	\{ with galvanic isolation between input and output of both the power stage and the feedback loop\}	5/06	reactors or choke coils, e.g. by tap changing H02P 13/00) . . . using impedances
3/33561	. . . \{having more than one ouput with independent control\}	$\begin{aligned} & 5 / 08 \\ & 5 / 10 \end{aligned}$ using capacitors only . . . using transformers
3/33569	. . . \{having several active switching elements (H02M 3/3353 takes precedence) $\}$	$5 / 12$ $5 / 14$ for conversion of voltage or current amplitude only for conversion between circuits of different
3/33571 \{Half-bridge at primary side of an isolation transformer\}	5/16	phase number . . for conversion of frequency
3/33573 \{Full-bridge at primary side of an isolation transformer\}	$\begin{aligned} & 5 / 18 \\ & 5 / 20 \end{aligned}$. . . for conversion of waveform . . using discharge tubes without control electrode
3/33576 \{having at least one active switching element at the secondary side of an isolation transformer\}	5/22	or semiconductor devices without control electrode . . using discharge tubes with control electrode or
3/33584	. \{Bidirectional converters\}		semiconductor devices with control electrode
3/33592 \{having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer $\}$	$5 / 225$ $5 / 25$ \{comprising two stages of AC-AC conversion, e.g. having a high frequency intermediate link \} using devices of a thyratron or thyristor type requiring extinguishing means
3/337	. . . in push-pull configuration \{(H02M 3/33576 takes precedence; with self-oscillating arrangements H02M 3/3382, H02M 3/3385) \}	$\begin{aligned} & 5 / 253 \\ & 5 / 257 \\ & 5 / 2573 \end{aligned}$ using discharge tubes only using semiconductor devices only \{with control circuit\}
3/3372	. \{of the parallel type \}	5/2576	- $\{$ with digital control\}
3/3374 \{ with preregulator, e.g. current injected push-pull\}	5/271 for conversion of frequency \{from a three phase input voltage \}
3/3376 \{with automatic control of output voltage or current $\}$	$5 / 272$ $5 / 273$ \{for variable speed constant frequency systems $\}$ $\{$ with digital control \}

5/275 using devices of a triode or transistor type requiring continuous application of a control signal	7/06
5/29	. using discharge tubes only	7/062
5/293 using semiconductor devices only	
5/2932 \{with automatic control of output voltage, current or power $\}$	$\begin{aligned} & 7 / 064 \\ & 7 / 066 \end{aligned}$
5/2935 \{using reverse phase control, i.e. turnon of switches in series with load at zero crossing of input voltage, turnoff before next zero crossing \}	$\begin{aligned} & 7 / 068 \\ & 7 / 08 \\ & 7 / 10 \end{aligned}$
5/2937 $\{u s i n g$ whole cycle control, i.e. switching an integer number of whole or half cycles of the AC input voltage $\}$	7/103
5/297 for conversion of frequency	7/106
5/32	. by dynamic converters	7/12
5/34	. . . using mechanical contact-making and breaking parts	7/125
5/36 wherein the parts are rotating and collectors co-operate with brushes or rollers	7/145
5/38	. . by combination of static with dynamic converters; by combination of dynamo-electric with other dynamic or static converters	$\begin{aligned} & 7 / 15 \\ & 7 / 151 \end{aligned}$
5/40	with intermediate conversion into dc	
5/42	. by static converters	7/153
5/44	. . . using discharge tubes or semiconductor devices to convert the intermediate dc into ac	$\begin{aligned} & 7 / 155 \\ & 7 / 1552 \end{aligned}$
5/443 using devices of a thyratron or thyristor type requiring extinguishing means	7/1555
5/447 using discharge tubes only	7/1557
5/45	. using semiconductor devices only	
5/4505 \{having a rectifier with controlled elements $\}$	$\begin{aligned} & 7 / 162 \\ & 7 / 1623 \end{aligned}$
5/451 with automatic control of output voltage or frequency	7/1626
5/452 with automatic control of output waveform	$7 / 17$ $7 / 19$
5/453 using devices of a triode or transistor type requiring continuous application of a control signal	7/21
5/456 using discharge tubes only	
5/458 using semiconductor devices only	7/213
5/4585 \{having a rectifier with controlled elements $\}$	$\begin{aligned} & 7 / 217 \\ & 7 / 2173 \end{aligned}$
5/46	. by dynamic converters	
5/48	. . by combination of static with dynamic converters; by combination of dynamo-electric with other dynamic or static converters	7/2176
7/00	Conversion of ac power input into dc power output; Conversion of dc power input into ac power output	
7/003	- \{Constructional details, e.g. physical layout, assembly, wiring or busbar connections\}	$\begin{aligned} & 7 / 219 \\ & 7 / 2195 \end{aligned}$
7/006	- \{using discharge tubes \}	
7/02	- Conversion of ac power input into dc power output without possibility of reversal	7/23
7/04	. . by static converters	
7/043	. . . \{using transformers or inductors only\}	7/25
7/046	. . \{using discharge tubes\}	
7/05	. . \{Capacitor coupled rectifiers\}	$7 / 26$ $7 / 28$
		7/30

7/06	. . . using discharge tubes without control electrode or semiconductor devices without control electrode
7/062 \{Avoiding or suppressing excessive transient voltages or currents $\}$
7/064	\{with several outputs\}
7/066 \{particular circuits having a special characteristic \}
7/068	\{mounted on a transformer\}
7/08	arranged for operation in parallel
7/10 arranged for operation in series, e.g. for multiplication of voltage
7/103 \{Containing passive elements (capacitively coupled) which are ordered in cascade on one source \}
7/106	\{With physical arrangement details\}
7/12	. . using discharge tubes with control electrode or semiconductor devices with control electrode
7/125 \{Avoiding or suppressing excessive transient voltages or currents $\}$
7/145 using devices of a thyratron or thyristor type requiring extinguishing means
7/15	. . . using discharge tubes only
7/151 \{with automatic control (H02M 7/153 takes precedence) $\}$
7/153 $\{$ arranged for operation in parallel $\}$
7/155	using semiconductor devices only
7/1552 \{in a biphase or polyphase arrangement (voltage multipliers H02M 7/19) \}
7/1555	. \{with control circuit\}
7/1557 \{with automatic control of the output voltage or current $\}$
7/162	in a bridge configuration
7/1623	. \{with control circuit\}
7/1626 \{with automatic control of the output voltage or current $\}$
7/17	arranged for operation in parallel
7/19 arranged for operation in series, e.g. for voltage multiplication
7/21 using devices of a triode or transistor type requiring continuous application of a control signal
7/213	using discharge tubes only
7/217	using semiconductor devices only
7/2173 \{in a biphase or polyphase circuit arrangement (H02M 7/2176 takes precedence; voltage multipliers H02M 7/25) \}
7/2176	. . \{comprising a passive stage to generate a rectified sinusoidal voltage and a controlled switching element in series between such stage and the output $\}$
7/219	in a bridge configuration
7/2195 \{the switches being synchronously commutated at the same frequency of the AC input voltage $\}$
7/23 arranged for operation in parallel \{(H02M 7/2176 takes precedence) $\}$
7/25 arranged for operation in series, e.g. for multiplication of voltage
7/26	. using open-spark devices, e.g. Marx rectifier
7/28	. using electrolytic rectifiers
7/30	by dynamic converters

7/32	. . . using mechanical contact-making and breaking parts	$\begin{aligned} & 7 / 51 \\ & 7 / 515 \end{aligned}$. . using discharge tubes only . . using semiconductor devices only
7/34 wherein the parts are rotating and collectors co-operate with brushes or rollers	$7 / 5152$ $7 / 5155$ \{with separate extinguishing means\} \{wherein each commutation element
7/36 with electromagnetically-operated vibrating contacts, e.g. chopper	$7 / 5157$	has its own extinguishing means\} \{ wherein the extinguishing of every
7/38	. . . using one or more sparking electrodes rotating over counterelectrodes		commutation element will be obtained by means of a commutation inductance,
7/40	. . by combination of static with dynamic converters; by combination of dynamo-electric with other dynamic or static converters	$7 / 516$	by starting another main commutation element in series with the first $\}$ Self-oscillating arrangements
7/42	- Conversion of dc power input into ac power output without possibility of reversal	$\begin{aligned} & 7 / 517 \\ & 7 / 519 \end{aligned}$ with special starting equipment in a push-pull configuration
7/44	by static converters		(H02M 7/517 takes precedence)
$7 / 445$	\{using discharge tubes\}	7/521	in a bridge configuration
7/46	. . . using discharge tubes without control electrode or semiconductor devices without control electrode	$7 / 523$ $7 / 5233$. . with LC-resonance circuit in the main circuit . . . \{the commutation elements being in
7/48	. . . using discharge tubes with control electrode or semiconductor devices with control electrode	7/5236	push-pull arrangement $\}$. \{in a series push-pull arrangement \}
7/4803 \{with means for reducing DC component from AC output voltage \}	$7 / 525$. . with automatic control of output waveform or frequency
7/4807 \{having a high frequency intermediate AC stage $\}$		(H02M 7/517- H02M 7/523 take precedence)
7/4811 \{having auxiliary actively switched resonant commutation circuits connected to intermediate DC voltage or between two push-pull branches\}	$\begin{aligned} & 7 / 527 \\ & 7 / 529 \\ & 7 / 53 \end{aligned}$ by pulse width modulation using digital control using devices of a triode or transistor type requiring continuous application of a control
7/4815 $\{$ Resonant converters (H02M 7/4811 and H02M 7/4826 take precedence) \}		signal $\{(H 02 \mathrm{M} 7 / 4807$, H02M $7 / 493$ and H02M 7/4826 take precedence) $\}$
$7 / 4818$ \{with means for adaptation of resonance frequency, e.g. by modification of capacitance or inductance of resonance circuits\}	$\begin{aligned} & 7 / 533 \\ & 7 / 537 \\ & 7 / 5375 \end{aligned}$ using discharge tubes only using semiconductor devices only, e.g. single switched pulse inverters
7/4826 \{operating from a resonant DC source, i.e. the DC input voltage varies periodically, e.g. resonant DC-link inverters\}	$7 / 538$	- with special starting equipment in a push-pull configuration (H02M 7/5375 takes precedence \{; with oscillating arrangements
7/483 Converters with outputs that each can have more than two voltages levels	7/53803	H02M 7/53832, H02M 7/53846\}) . \{with automatic control of output
7/4833	. \{Capacitor voltage balancing\}	\%	voltage or current $\}$
7/4835 \{comprising two or more cells, each including a switchable capacitor, the	7/53806 \{in a push-pull configuration of the parallel type $\}$
	capacitors having a nominal charge	$7 / 5381$	Parallel type
	voltage which corresponds to a given fraction of the input voltage, and the	$7 / 5383$ in a self-oscillating arrangement (H02M 7/538 takes precedence)
	capacitors being selectively connected in series to determine the instantaneous output voltage \}	$\begin{aligned} & 7 / 53832 \\ & 7 / 53835 \end{aligned}$ $\{$ in a push-pull arrangement $\}$ $\{$ of the parallel type \}
7/4837	. \{Flying capacitor converters \}	$7 / 53838$	using a single commutation path
7/487	. Neutral point clamped inverters	$7 / 53846$	cuits
7/49 Combination of the output voltage waveforms of a plurality of converters		WARNING
7/493 the static converters being arranged for operation in parallel		Group H02M 7/53846 and subgroups is not complete, see provisionally also H02M 7/5383
7/497 sinusoidal output voltages being obtained by combination of several voltages being out of phase	7/538463	and subgroups . $\{$ for thyristor type converters $\}$
7/501 sinusoidal output voltages being obtained by the combination of several pulse-voltages having different amplitude and width	7/538466 7/53854 $7 / 53862$ \{for transistor type converters \} using thyristor type converters using transistor type converters
7/505 using devices of a thyratron or thyristor type requiring extinguishing means $\{(\mathrm{H} 02 \mathrm{M} 7 / 4807$, H02M 7/483, H02M 7/493 and H02M 7/4826 take precedence) \}	$\begin{aligned} & 7 / 5387 \\ & 7 / 53871 \\ & 7 / 53873 \end{aligned}$ in a bridge configuration $\{$ with automatic control of output voltage or current $\}$

7/53875 \{ with analogue control of threephase output\}
$7 / 53876$ \{based on synthesising a desired voltage vector via the selection of appropriate fundamental voltage vectors, and corresponding dwelling times $\}$
$7 / 53878$. . . \{by time shifting switching signals of one diagonal pair of the bridge with respect to the other diagonal pair\}
$7 / 5388$ with asymmetrical configuration of switches
	WARNING
	Group H02M 7/5388 is not complete, see provisionally also H02M 7/5387 and subgroups
7/539 with automatic control of output wave form or frequency (H02M 7/5375 - H02M 7/5387 take precedence)
$7 / 5395$. . . by pulse-width modulation
7/54	by dynamic converters
7/56	. . . using mechanical parts to select progressively, or to vary continuously, the input potential
7/58	. . . using mechanical contact-making and breaking parts to interrupt a single potential
7/60 wherein the parts are rotating and collectors co-operate with brushes or rollers
7/62 with electromagnetically-operated vibrating contacts, e.g. chopper
7/64	. . by combination of static with dynamic converters; by combination of dynamo-electric with other dynamic or static converters
7/66	with possibility of reversal
7/68	by static converters
7/70	. . . using discharge tubes without control electrode or semiconductor devices without control electrode
7/72	. . . using discharge tubes with control electrode or semiconductor devices with control electrode
7/75 using devices of a thyratron or thyristor type requiring extinguishing means
7/753	. using discharge tubes only
7/757	. using semiconductor devices only
$7 / 7575$ \{for high voltage direct transmission link $\}$
7/758 with automatic control of output waveform or frequency
7/77	. . arranged for operation in parallel
7/79 using devices of a triode or transistor type requiring continuous application of a control signal
7/793 using discharge tubes only
7/797 using semiconductor devices only
7/81	. . . arranged for operation in parallel
7/82	. using open-spark devices, e.g. Marx rectifier
7/84	. using electrolytic rectifiers
7/86	. by dynamic converters
7/88	. . . using mechanical parts to select progressively or to vary continuously the input potential
7/90	. . . using mechanical contact-making and breaking parts to interrupt a single potential

. . . . wherein the parts are rotating and collectors co-operate with brushes or rollers
. . . . wherein the parts are operated by rotating cams or cam-like devices
. . . . with electromagnetically-operated vibrating contacts, e.g. chopper
. . . . with moving liquid contacts
. . by combination of static with dynamic converters; by combination of dynamo-electric with other dynamic or static converters

Power conversion systems not covered by the preceding groups

