CPC

COOPERATIVE PATENT CLASSIFICATION

H
 H03
 ELECTRICITY
 (NOTE omitted)
 ELECTRONIC CIRCUITRY

Abstract

DEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER (masers, lasers H01S; circuits capable of acting both as modulator and demodulating pulses $\underline{H 03 \mathrm{~K} 9 / 00}$; transforming types of pulse modulation $\underline{H 03 \mathrm{~K}} 11 / 00$; coding, decoding or code conversion, in general H 03 M ; repeater stations $\mathrm{H} 04 \mathrm{~B} 7 / 14$; demodulators adapted for ac systems of digital information transmission H04L 27/00; synchronous demodulators adapted for colour television H04N 9/66)

NOTE

This subclass covers only:

- demodulation or transference of signals modulated on a sinusoidal carrier or on electromagnetic waves;
- comparing phase or frequency of two mutually-independent oscillations.

WARNING

In this subclass non-limiting references (in the sense of paragraph 39 of the Guide to the IPC) may still be displayed in the scheme.

Demodulation of amplitude-modulated oscillations (H03D 5/00, H03D 9/00, H03D 11/00 take precedence)
. Details
. . Modifications of demodulators to reduce interference by undesired signals
. . Modifications of demodulators to reduce distortion, e.g. by negative feedback
. by means of non-linear two-pole elements (H03D 1/22, H03D 1/26, H03D 1/28 take precedence)
. . of diodes
. . . with provision for equalising ac and dc loads

- by means of non-linear elements having more than two poles (H03D 1/22, H03D 1/26, H03D 1/28 take precedence)
. . of discharge tubes
. . of semiconductor devices
. . with provision for preventing undesired type of demodulation, e.g. preventing anode detection in a grid detection circuit
- Homodyne or synchrodyne circuits $\{($ receiver circuits H04B 1/30) \}
. . \{Decoders for simultaneous demodulation and decoding of signals composed of a sum-signal and a suppressed carrier, amplitude modulated by a difference signal, e.g. stereocoders\}
. . $\{$ using diodes for the decoding \}
. . . \{using switches for the decoding (diodes used as switches H03D 1/2218) \}
. . . \{using a phase locked loop\}
- . \{using two quadrature channels (H03D 1/2209 takes precedence) $\}$
. . . \{and a phase locked loop\}
. . . . \{including a counter or a divider in the PLL\}

1/2272
1/2281
1/229
/24
. . \{using FET's (H03D 1/2209, H03D 1/2245 and H03D 1/2281 take precedence) $\}$

- . \{using a phase locked loop (H03D 1/2236 and H03D 1/2254 take precedence) $\}$
. . \{using at least a two emittor-coupled differential pair of transistors (H03D 1/2209-H03D 1/2281 take precedence) $\}$
. . for demodulation of signals wherein one sideband or the carrier has been wholly or partially suppressed $\{($ receiver circuits H04B 1/302) \}
. by means of transit-time tubes
- by deflecting an electron beam in a discharge tube (H03D 1/26 takes precedence)
Demodulation of angle-, \{frequency- or phase-\} modulated oscillations (H03D 5/00, H03D 9/00, H03D 11/00 take precedence)
- \{Details of arrangements applicable to more than one type of frequency demodulator (H03D 3/28 takes precedence) $\}$
- . \{Modifications of demodulators to reduce interference by undesired signals (H03D 3/248 takes precedence) $\}$
- . \{Arrangements for reducing frequency deviation, e.g. by negative frequency feedback (combined with a phase locked loop demodulator H03D 3/242; changing frequency deviation for modulators H03C 3/06) \}
. . . \{wherein the demodulated signal is used for controlling an oscillator, e.g. the local oscillator\}
. . . \{wherein the demodulated signal is used for controlling a bandpass filter (automatic bandwidth control H03G; automatic frequency control H03J 7/02) \}
- \{by sampling the oscillations and further processing the samples, e.g. by computing techniques (H03D 3/007 takes precedence) \}
- \{by converting the oscillations into two quadrature related signals (H03D 3/245 takes precedence) \}
. . $\{$ Compensating DC offsets $\}$
- . \{Compensating quadrature phase or amplitude imbalances $\}$
- by detecting phase difference between two signals obtained from input signal (H03D 3/28- H03D 3/32 take precedence; \{muting in frequency-modulation receivers $\mathrm{H} 03 \mathrm{G} 3 / 28$ \}; limiting arrangements H03G 11/00)
- . by counting or integrating cycles of oscillations \{(arrangements for measuring frequencies G01R 23/10) \}
- by combining signals additively or in product demodulators
- . . by means of diodes, e.g. Foster-Seeley discriminator
. . . . in which the diodes are simultaneously conducting during the same half period of the signal, e.g. radio detector
. . . by means of discharge tubes having more than two electrodes
. . . by means of semiconductor devices having more than two electrodes
. . . by means of electromechanical resonators
. . by means of synchronous gating arrangements
- . producing pulses whose amplitude or duration depends on phase difference
- . by means of active elements with more than two electrodes to which two signals are applied derived from the signal to be demodulated and having a phase difference related to the frequency deviation, e.g. phase detector
- . Modifications of demodulators to reject or remove amplitude variations by means of lockedin oscillator circuits
. . . \{the oscillator being part of a phase locked loop $\}$
. . . . \{combined with means for controlling the frequency of a further oscillator, e.g. for negative frequency feedback or AFC\}
. . . \{combined with means for obtaining automatic gain control $\}$
. . . . \{using at least twophase detectors in the loop (H03D 3/244 takes precedence; in general H03L 7/087) \}
. . . $\{$ using a controlled phase shifter (in general H03L 7/081) \}

Modifications of demodulators to reduce effects of temperature variations ($\{$ automatic frequency regulation in receivers $\underline{\mathrm{H} 03 \mathrm{~J}\} \text {; automatic frequency }}$ control H03L)
by means of transit-time tubes

- by deflecting an electron beam in a discharge tube (H03D 3/30 takes precedence)
. by means of electromechanical devices (H03D 3/16 takes precedence)

Circuits for demodulating amplitude-modulated or angle-modulated oscillations at will (H03D 9/00, H03D 11/00 take precedence)

Transference of modulation from one carrier to another, e.g. frequency-changing (H03D 9/00,

 H03D 11/00 take precedence; dielectric amplifiers, magnetic amplifiers, parametric amplifiers used as a frequency-changers H 03 F)- \{by means of superconductive devices $\}$
. by means of diodes (H03D 7/14 - H03D 7/22 take precedence)
. . having \{a partially \} negative resistance characteristic, e.g. tunnel diode
- by means of discharge tubes having more than two electrodes (H03D 7/14- H03D 7/22 take precedence)
. . the signals to be mixed being applied between the same two electrodes
. . the signals to be mixed being applied between different pairs of electrodes
- by means of semiconductor devices having more than two electrodes (H03D 7/14-H03D 7/22 take precedence)
- • \{ with field effect transistors \}
- Balanced arrangements
. . \{with diodes \}
. . \{ with discharge tubes having more than two electrodes $\}$
- . \{with transistors \}
. . . \{using bipolar transistors (H03D 7/145 takes precedence) $\}$
- . . \{using field-effect transistors (H03D 7/145 takes precedence) $\}$
. . . \{using a combination of bipolar transistors and field-effect transistors $\}$
-• \{Double balanced arrangements, i.e. where both input signals are differential $\}$
. . . $\{$ Passive mixer arrangements $\}$
. . . \{Subharmonic mixer arrangements \}
- . $\{$ comprising components for selecting a particular frequency component of the output \}
. . . \{Arrangements to linearise a transconductance stage of a mixer arrangement \}
- Multiple-frequency-changing
- . \{all the frequency changers being connected in cascade\}
. . . \{the local oscillations of at least two of the frequency changers being derived from a single oscillator $\}$
- . \{at least two frequency changers being located in different paths, e.g. in two paths with carriers in quadrature (combined with amplitude demodulation H03D 1/2245, combined with angle demodulation H03D 3/007; N-path filters H03H 19/002) \}
. . . \{using two or more quadrature frequency translation stages $\}$
. . . $\{$ using a feedback loop containing mixers or demodulators $\}$
- Modifications of frequency-changers for eliminating image frequencies $\{(\underline{H 03 D} 7 / 16$ takes precedence $)\}$

$7 / 20$. by means of transit-time tubes
$7 / 22$	- by deflecting an electron beam in a discharge tube
	(H03D $7 / 20$ takes precedence)

Demodulation or transference of modulation of modulated electromagnetic waves (demodulating light, transferring modulation in light waves G02F 2/00)
. Demodulation using distributed inductance and capacitance, e.g. in feeder lines
. . for angle-modulated oscillations

- Transference of modulation using distributed inductance and capacitance
. . \{by means of diodes $\}$
- . $\{$ mounted in a hollow waveguide (H03D 9/0641 takes precedence) $\}$
. . . \{mounted in a coaxial resonator structure \}
. . . \{mounted on a stripline circuit\}
. . . . \{located in a hollow waveguide \}
- . \{by means of discharge tubes having more than two electrodes $\}$
- . \{by means of semiconductor devices having more than two electrodes\}
. . . \{using bipolar transistors (H03D 9/0683 takes precedence) $\}$
. . . \{using field effect transistors (H03D 9/0683 takes precedence)\}
. . . \{using a combination of bipolar transistors and field effect transistors \}
\{by means of superconductive devices\}
Super-regenerative demodulator circuits
\{(applications in responders G01S) \}
- for amplitude-modulated oscillations
. . by means of semiconductor devices having more than two electrodes
. for angle-modulated oscillations
- . by means of semiconductor devices having more than two electrodes

Circuits for comparing the phase or frequency of two mutually-independent oscillations \{(measuring phase G01R 25/00; phase-discriminators with yes/no output G01R 25/005) \}

- \{in which a pulse counter is used followed by a conversion into an analog signal $\}$
. . \{the counter being an up-down counter\}
. \{in which both oscillations are converted by logic means into pulses which are applied to filtering or integrating means\}
. . \{the logic means delivering pulses at more than one terminal, e.g. up and down pulses\}
- \{in which one of the oscillations is, or is converted into, a signal having a special waveform, e.g. triangular\}
. . \{and by sampling this signal by narrow pulses obtained from the second oscillation\}
. \{by analog multiplication of the oscillations or by performing a similar analog operation on the oscillations $\}$
. . \{using transistors\}
- . \{using diodes $\}$

2200/00

2200/0001
2200/0003
2200/0005
2200/0007
2200/0009
2200/0011
2200/0013
2200/0015
2200/0017
2200/0019
2200/0021
2200/0023
2200/0025
2200/0027
2200/0029
2200/0031
2200/0033
2200/0035
2200/0037
2200/0039
2200/0041
2200/0043
2200/0045
2200/0047
2200/0049
2200/005
2200/0052
2200/0054
2200/0056
2200/0058
2200/006
2200/0062
2200/0064
2200/0066
2200/0068
2200/007
2200/0072
2200/0074
2200/0076
2200/0078
2200/008
2200/0082
2200/0084
2200/0086
2200/0088

2200/009
2200/0092
2200/0094

2200/0096
2200/0098

Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
. Circuit elements of demodulators
. . Rat race couplers
. . Wilkinson power dividers or combiners
. . Dual gate field effect transistors
. . Emitter or source coupled transistor pairs or long tail pairs
. . Diodes
. . . Diodes connected in a ring configuration
. . . Diodes connected in a star configuration
. . Intermediate frequency filter
. . Gilbert multipliers
. . Frequency multipliers

- . Balun circuits
. . Gain control circuits
. . . including arrangements for assuring the same gain in two paths
. . Loop circuits with controlled phase shift
. . PLL circuits with quadrature locking, e.g. a Costas loop
. . Current mirrors
. . Digital multipliers and adders used for detection
. . Diplexers
. . Exclusive OR logic circuits
. Functional aspects of demodulators
. . Bias and operating point
. . Calibration of demodulators
. . Offset of DC voltage or frequency
. . Analog multiplication for detection
. . Analog to digital conversion
. . Digital to analog conversion
. . Digital filters
. . . including a digital decimation filter
. . . using a digital filter with interpolation
. . Signal sampling
. . . Computation of input samples, e.g. successive samples
. . Detection of passages through null of a signal
. . Mixing
. . . by computation
. . . by using a logic circuit, e.g. flipflop, XOR
. . . by complex multiplication
. . . using a resistive mixer or a passive mixer
. . . using a distributed mixer
. . . using a switched phase shifter or delay line
. . Hilbert type transformation
- . Quadrature arrangements
. . Lowering the supply voltage and saving power
. . Reduction or prevention of harmonic frequencies
. . Reduction of intermodulation, nonlinearities, adjacent channel interference; intercept points of harmonics or intermodulation products
. . Reduction of local oscillator or RF leakage
. . Detection or reduction of fading in multipath transmission arrangements
. . Measures to address temperature induced variations of demodulation
. . . by stabilising the temperature
. . . by compensating temperature induced variations

