CPC

COOPERATIVE PATENT CLASSIFICATION

H
 H03

H03F

Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements

. Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
. . \{in transistor amplifiers $\}$
. . . \{with control of the supply voltage or current \}

- . . . \{Continuous control\}
. \{by using a signal derived from the input signal\}
. $\{$ using supply converters \}
. \{by using a signal derived from the output signal, e.g. bootstrapping the voltage supply $\}$
. $\{$ using supply converters \}
. . . . \{Stepped control\}
. \{by using a signal derived from the input
\{by using a signal derived from the output signal\}
. . . \{with control of the polarisation voltage or current, e.g. gliding Class A\}
. . . . \{by using a signal derived from the input signal\}
\{by using a signal derived from the output signal\}
. . . \{Selecting one or more amplifiers from a plurality of amplifiers\}
. . . \{Reducing the number of DC-current paths \}
. . . \{using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers\}

1/0294
. in discharge-tube amplifiers
. . . to raise the efficiency of amplifying modulated
radio frequency waves; to raise the efficiency of amplifiers acting also as modulators $\{($ modulation H03C) $\}$
. . . . Doherty-type amplifiers

- Modifications of amplifiers to reduce detrimental influences of internal impedances of amplifying influences of internal impedances of amplifying
elements (wide-band amplifiers with inter-stage coupling networks incorporating these impedances H03F 1/42)
- . $\{$ in transistor amplifiers (H03F 1/10-H03F 1/22 take precedence) $\}$
-•• \{with FET's $\}$
. . by use of amplifying elements with multiple electrode connections
. . by use of attenuating means $\{($ attenuators $\underline{H 03 G})\}$
. . . in discharge-tube amplifiers
. . by use of neutralising means
. . . in discharge-tube amplifiers
- . by use of distributed coupling \{, i.e. distributed
amplifiers (distributed amplifiers using coupling networks with distributed constants H03F 3/605) \}
. . . in discharge-tube amplifiers
. . by use of cascode coupling, i.e. earthed cathode or emitter stage followed by earthed grid or base stage respectively
- . \{using vector summing of two or more constant amplitude phase-modulated signals\} of amplifiers nections
-•• \{with MOSFET's \}
-• . with junction-FET's \}
. . . in discharge-tube amplifiers
- Modifications of amplifiers to reduce influence of
noise generated by amplifying elements

H03F 1/42
H03F 1/42
H03F 3/00
H03F 3/30
H03F 7/00
2. \{In this subclass non-limiting references (in the sense of paragraph 39 of the Guide to the IPC) may still be displayed in the

1/28	. . in discharge-tube amplifiers \{(constructional modifications H01J 23/11) \}
1/30	- Modifications of amplifiers to reduce influence of variations of temperature or supply voltage \{or other physical parameters (in differential amplifiers H03F 3/45479) \}
1/301	. . \{in MOSFET amplifiers (H03F 1/303, H03F 1/305, H03F 1/308 take precedence) \}
1/302	. . \{in bipolar transistor amplifiers (H03F 1/303, H03F 1/305, H03F 1/307 take precedence) \}
1/303	. . \{using a switching device (H03F 1/305, H03F 3/005, H03F 3/38 take precedence) $\}$
1/304	. . . \{and using digital means\}
1/305	- . \{in case of switching on or off of a power supply $\}$
1/306	. . \{in junction-FET amplifiers (H03F 1/303, H03F 1/305, H03F 1/309 take precedence) \}
1/307	. . \{in push-pull amplifiers \}
1/308	. . . \{using MOSFET\}
1/309	. . . $\{$ using junction-FET\}
1/32	. Modifications of amplifiers to reduce non-linear distortion (by negative feedback H03F 1/34)
1/3205	. . \{in field-effect transistor amplifiers $\}$
1/3211	. . \{in differential amplifiers $\}$
1/3217	. . \{in single ended push-pull amplifiers \}
1/3223	. . \{using feed-forward (H03F 1/3211 takes precedence) $\}$
1/3229	. . . \{using a loop for error extraction and another loop for error subtraction\}
1/3235	. . . \{using a pilot signal\}
1/3241	. . \{using predistortion circuits (H03F 1/3211, H03F 1/3217 take precedence) \}
1/3247	. . . \{using feedback acting on predistortion circuits (H03F 1/3264 takes precedence) \}
1/3252	. . . \{using multiple parallel paths between input and output (H03F 1/3258, H03F 1/3282, H03F 1/3294 take precedence) \}
1/3258	. . . \{based on polynomial terms\}
1/3264	. . . \{in audio amplifiers $\}$
1/327 \{to emulate discharge tube amplifier characteristics\}
1/3276	. . . \{using the nonlinearity inherent to components, e.g. a diode\}
1/3282	. . . \{Acting on the phase and the amplitude of the input signal \}
1/3288 \{to compensate phase shift as a function of the amplitude\}
1/3294	. . . \{Acting on the real and imaginary components of the input signal $\}$
1/33	. . in discharge-tube amplifiers
1/34	. Negative-feedback-circuit arrangements with or without positive feedback (H03F 1/02-H03F 1/30, H03F 1/38-H03F 1/50, H03F 3/50 take precedence \{; for rejection of common mode signals H03F 3/45479\})
1/342	. . \{in field-effect transistor amplifiers\}
1/345	- . \{using hybrid or directional couplers\}
1/347	. . \{using transformers \}
1/36	. . in discharge-tube amplifiers
1/38	. Positive-feedback circuit arrangements without negative feedback
1/40	. . in discharge-tube amplifiers
1/42	. Modifications of amplifiers to extend the bandwidth
1/48	. of aperiodic amplifiers

. . . \{with field-effect transistors \}
. . . \{with IC amplifier blocks\}
. . . with tubes only

- Circuit arrangements for protecting such amplifiers $\{$ (monitoring arrangements G01R 31/28; increasing reliability in communication systems, e.g. using redundancy H04B 1/74) \}
. . \{for amplifiers using field-effect devices (H03F 1/526 takes precedence) \}
. . \{protecting by using redundant amplifiers\}
- . with tubes only $\{$ (testing of vacuum tubes G01R 31/25) \}
. . . \{Replacing by standby devices\}
. . . \{Protection of filaments $\}$
- . . \{Delaying application of anode power supply with respect to application of filament heating power supply $\}$
- . . \{Protection of anode or grid circuit against overload \}
. Modifications of input or output impedances, not otherwise provided for
. . \{using inductive elements\}

Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
 NOTE

Groups H03F 3/20-H03F 3/72 take precedence over groups H03F 3/02-H03F 3/189.
\{This Note corresponds to IPC Note (1) relating to H03F 3/02 - H03F 3/189.\}

- \{using switched capacitors, e.g. dynamic amplifiers; using switched capacitors as resistors in differential amplifiers (H03F 3/45 takes precedence) \}
- with tubes only
- with semiconductor devices only
. . using hole storage effect
. . controlled by light
. . . \{ with FET's (H03F 3/085 takes precedence) \}
. . . \{using opto-couplers between stages\}
. . . \{with IC amplifier blocks (H03F 3/085 takes precedence) \}
. . with diodes $\{($ parametric amplifiers $\mathbf{H 0 3 F} 7 / 00)\}$
. . . with Esaki diodes
. . with amplifying devices having more than three electrodes or more than two PN junctions
. . with field-effect devices
. . . \{with junction-FET's\}
. Low-frequency amplifiers, e.g. audio preamplifiers
. . with semiconductor devices only
. . . with field-effect devices (H03F 3/187 takes precedence)
-•• . \{with junction-FET devices \}
. . . in integrated circuits
- High-frequency amplifiers, e.g. radio frequency amplifiers
. . with semiconductor devices only
. . . Tuned amplifiers (H03F 3/193, H03F 3/195 take precedence)
. . . with field-effect devices (H03F 3/195 takes precedence)
. . . . \{with junction-FET devices\}
. . . in integrated circuits

3/20	. Power amplifiers, e.g. Class B amplifiers, Class C amplifiers (H03F 3/26-H03F 3/30 take precedence)
3/21	. . with semiconductor devices only $\{(\mathrm{H} 03 \mathrm{~F} 3 / 245$ takes precedence) $\}$
3/211	. . . \{using a combination of several amplifiers (H03F 3/60 takes precedence)
3/213	in integrated circuits
3/217	Class D power amplifiers; Switching amplifiers
3/2171 \{with field-effect devices (H03F 3/2173 - H03F 3/2178 take precedence) $\}$
3/2173	\{of the bridge type\}
3/2175 \{using analogue-digital or digital-analogue conversion (H03F 3/2173 takes precedence) \}
3/2176	\{Class E amplifiers \}
3/2178 \{using more than one switch or switching amplifier in parallel or in series (H03F 3/2173, H03F 3/2175 take precedence) $\}$
3/22	. with tubes only ($\mathrm{H} 03 \mathrm{~F} 3 / 24$ takes precedence)
3/24	- of transmitter output stages
3/245	. . \{with semiconductor devices only\}
3/26	. Push-pull amplifiers; Phase-splitters therefor (duplicated single-ended push-pull arrangements or phase-splitters therefor H03F 3/30)
3/265	- \{with field-effect transistors only \}
3/28	. with tubes only
3/30	. Single-ended push-pull $\{[\mathrm{SEPP}]\}$ amplifiers \{(single-ended sense amplifiers G11C 7/067) \}; Phase-splitters therefor
3/3001	\{with field-effect transistors \}
3/3008	. . \{Bifet SEPP output stages $\}$
3/301	. . . \{CMOS common drain output SEPP amplifiers (H03F 3/3008 takes precedence) $\}$
3/3011	\{with asymmetrical driving of the end stage\}
3/3013 \{using a common drain driving stage, i.e. follower stage $\}$
3/3015 \{using a common source driving stage, i.e. inverting stage $\}$
3/3016	\{with symmetrical driving of the end stage \}
3/3018	\{using opamps as driving stages\}
3/302	\{using two SEPP driving stages\}
3/3022	. . \{CMOS common source output SEPP amplifiers (H03F 3/3008 takes precedence) \}
3/3023	\{with asymmetrical driving of the end stage\}
3/3025 \{using a common drain driving stage, i.e. follower stage $\}$
3/3027 \{using a common source driving stage, i.e. inverting stage $\}$
3/3028	\{ with symmetrical driving of the end stage\}
3/303	. . \{using opamps as driving stages\}
3/3032	- \{using two SEPP driving stages\}
3/3033	. . . \{NMOS SEPP output stages (H03F 3/3008 takes precedence) $\}$
3/3035 \{using differential amplifiers as phasesplitting elements $\}$
3/3037 \{with asymmetric control, i.e. one control branch containing a supplementary phase inverting stage \}
3/3038	. . . \{PMOS SEPP output stages (H03F 3/3008 takes precedence) $\}$
3/304 \{using differential amplifiers as phasesplitting element $\}$

3/3042

3/3044

3/3045
3/3047

3/3049

3/305
3/3052
3/3054
3/3055

3/3057
3/3059
3/3061

3/3062
3/3064
3/3066

3/3067
3/3069
3/3071
3/3072
3/3074
3/3076
3/3077

3/3079
3/3081

3/3083

3/3084

3/3086

3/3088

3/3089

3/3091

3/3093

3/3094

3/3096

3/3098
3/34

3/343
3/3432
. . . . \{ with asymmetric control, i.e. one control branch containing a supplementary phase inverting stage\}

- . . \{Junction FET SEPP output stages (H03F 3/3008 takes precedence) \}
. . . . \{with asymmetrical driving of the end stage\}
. \{using a common drain driving stage, i.e. follower stage
- \{using a common source driving stage, i.e. inverting stage $\}$
. . . . \{with symmetrical driving of the end stage \}
. \{using opamps as driving stages \}
. \{using two SEPP driving stages \}
. . . \{Parallelled mixed SEPP stages, e.g. a CMOS common drain and a CMOS common source in parallel or bipolar SEPP and FET SEPP in parallel $\}$
- . . . \{with asymmetrical driving of the end stage \}
. . . . \{with symmetrical driving of the end stage\}
. . . \{Bridge type, i.e. two complementary controlled SEPP output stages\}
. . . . \{with asymmetrical driving of the end stage \}
. . . . \{with symmetrical driving of the end stage\}
. . \{the collectors of complementary power transistors being connected to the output\}
. . . \{ with asymmetrical driving of the end stage \}
- . \{the emitters of complementary power transistors being connected to the output\}
. . . \{with asymmetrical driving of the end stage\}
. . . . \{using Darlington transistors (H03F 3/3074 takes precedence) $\}$
. . . . \{using parallel power transistors \}
. . . $\{$ with symmetrical driving of the end stage $\}$
. . . . \{using Darlington transistors (H03F 3/3079 takes precedence) $\}$
. . . . \{using parallel power transistors \}
. . \{Duplicated single-ended push-pull arrangements, i.e. bridge circuits (using FET's H03F 3/3061)\}
- . \{the power transistors being of the same type (H03F 3/3001 takes precedence) \}
. . . \{one of the power transistors being controlled by the output signal $\}$
. . . \{two power transistors being controlled by the input signal\}
. . . . \{with asymmetric control, i.e. one control branch containing a supplementary phase inverting transistor $\}$
. . . . \{comprising field-effect transistors in the control circuit\}
. . . . \{comprising two complementary transistors for phase-splitting\}
. . . . \{comprising a differential amplifier as phasesplitting element $\}$
. . . . $\{$ Phase splitters therefor (H03F 3/3088, H03F 3/3091, H03F 3/3093, H03F 3/3096, H03F 3/3098 take precedence) \}
. . . . \{using a single transistor with output on emitter and collector as phase splitter\}
. . . . \{using a transformer as phase splitter\}
- DC amplifiers in which all stages are DC-coupled (H03F 3/45 takes precedence)
- . with semiconductor devices only
. . . \{with bipolar transistors \}

3/3435	\{using Darlington amplifiers \}
3/3437	\{with complementary transistors\}
3/345	. . . with field-effect devices (H03F 3/347 takes precedence)
3/3455	\{with junction-FET's \}
3/347	. . in integrated circuits
3/36	. with tubes only
3/38	. DC amplifiers with modulator at input and demodulator at output; Modulators or demodulators specially adapted for use in such amplifiers \{(switched capacitor amplifiers H03F 3/005) \}
3/387	. . with semiconductor devices only
3/393	. with field-effect devices
3/40	. with tubes only
3/42	. Amplifiers with two or more amplifying elements having their dc paths in series with the load, the control electrode of each element being excited by at least part of the input signal, e.g. so-called totempole amplifiers
3/423	. \{with MOSFET's \}
3/426	- \{with junction-FET's \}
3/44	. with tubes only
3/45	. Differential amplifiers (differential sense amplifiers G11C 7/062)
3/45071	\{with semiconductor devices only \}
3/45076	. . . \{characterised by the way of implementation of the active amplifying circuit in the differential amplifier $\}$
3/4508 \{using bipolar transistors as the active amplifying circuit (H03F 3/45278 takes precedence) $\}$
3/45085 \{Long tailed pairs (H03F 3/45112, H03F 3/45139 take precedence) \}
3/45089	\{Non-folded cascode stages\}
3/45094	. . \{Folded cascode stages\}
3/45098 $\{$ PI types (H03F 3/45125, H03F 3/45152 take precedence) $\}$
3/45103 \{Non-folded cascode stages \}
3/45107	- \{Folded cascode stages\}
3/45112 \{Complementary long tailed pairs having parallel inputs and being supplied in parallel $\}$
3/45116 \{Non-folded cascode stages \}
3/45121	- \{Folded cascode stages\}
3/45125 \{Complementary PI types having parallel inputs and being supplied in parallel\}
3/4513	- \{Non-folded cascode stages \}
3/45134	. . \{Folded cascode stages\}
3/45139 \{Complementary long tailed pairs having parallel inputs and being supplied in series\}
3/45143	- \{Non-folded cascode stages \}
3/45147	. . \{Folded cascode stages\}
3/45152 \{Complementary PI types having parallel inputs and being supplied in series\}
3/45156	. . \{Non-folded cascode stages\}
3/45161	- \{Folded cascode stages \}
3/45165	- \{Complementary cross coupled types\}
3/4517	. $\{$ Complementary non-cross coupled types\}
3/45174 $\{$ Mirror types\}
3/45179 \{using MOSFET transistors as the active amplifying circuit (H03F 3/45278 takes precedence) \}

3/45183	. . . \{Long tailed pairs (H03F 3/4521, H03F 3/45237 take precedence) \}
3/45188	- \{Non-folded cascode stages\}
3/45192	- \{Folded cascode stages\}
3/45197	. . . \{Pl types (H03F 3/45224, H03F 3/45251 take precedence) $\}$
3/45201	- \{Non-folded cascode stages\}
3/45206	\{Folded cascode stages\}
3/4521	. . \{Complementary long tailed pairs having parallel inputs and being supplied in parallel $\}$
3/45215	. . \{Non-folded cascode stages $\}$
3/45219	- \{Folded cascode stages\}
3/45224	. . \{Complementary Pl types having parallel inputs and being supplied in parallel\}
3/45228	. \{Non-folded cascode stages\}
3/45233	\{Folded cascode stages\}
3/45237 \{Complementary long tailed pairs having parallel inputs and being supplied in series $\}$
3/45242	. \{Non-folded cascode stages\}
3/45246	- \{Folded cascode stages\}
3/45251 \{Complementary Pl types having parallel inputs and being supplied in series $\}$
3/45255	. \{Non-folded cascode stages\}
3/4526	\{Folded cascode stages\}
3/45264	. . . \{Complementary cross coupled types\}
3/45269	\{Complementary non-cross coupled types\}
3/45273	\{Mirror types\}
3/45278	- \{using BiFET transistors as the active amplifying circuit\}
3/45282	. . . \{Long tailed pairs (H03F 3/45309, H03F 3/45336 take precedence) \}
3/45286	\{Non-folded cascode stages\}
3/45291	- \{Folded cascode stages\}
3/45295 \{Pl types (H03F 3/45322, H03F 3/45349 take precedence) $\}$
3/453	. \{Non-folded cascode stages\}
3/45304	- \{Folded cascode stages\}
3/45309	. . \{Complementary long tailed pairs having parallel inputs and being supplied in parallel $\}$
3/45313	. \{Non-folded cascode stages\}
3/45318	- \{Folded cascode stages\}
3/45322	. . \{Complementary Pl types having parallel inputs and being supplied in parallel\}
3/45327	. \{Non-folded cascode stages\}
3/45331	. \{Folded cascode stages\}
3/45336	. . \{Complementary long tailed pairs having parallel inputs and being supplied in series\}
3/4534	- \{Non-folded cascode stages \}
3/45345	- \{Folded cascode stages\}
3/45349	. . . \{Complementary Pl types having parallel inputs and being supplied in series $\}$
3/45354	. \{Non-folded cascode stages\}
3/45358	. . . \{Folded cascode stages\}
3/45363	- \{Complementary cross coupled types\}
3/45367	. . \{Complementary non-cross coupled types\}
3/45372	. \{Mirror types\}
3/45376 \{using junction FET transistors as the active amplifying circuit (H03F 3/45278 takes precedence) \}

3/45699
.
3/4easuring at the input circuit of the
differential amplifier\}

856 \{Controlling the common source circuit of the differential amplifier \}
3/4586	. \{Controlling the active amplifying circuit of the differential amplifier\}
3/45865	. . \{Controlling the loading circuit of differential amplifier\}
3/45869	. \{Measuring at the active amplifying circuit of the differential amplifier $\}$
3/45874	. \{Controlling the loading circuit of differential amplifier\}
3/45878	- \{Measuring at the common source circuit of the differential amplifier $\}$
3/45883	. . \{Controlling the active amplifying circuit of the differential amplifier $\}$
3/45887 \{Controlling the loading circuit of the differential amplifier\}
3/45892	\{by offset reduction\}
3/45896	\{by using a feedback circuit\}
3/45901	- \{using switching means, e.g. sample and hold\}
3/45905	\{by using a feedforward circuit\}
3/4591	- \{using switching means, e.g. sample and hold $\}$
3/45914	\{by using balancing means\}
3/45919	. . \{using switching means\}
3/45923	\{by using cross switches\}
3/45928	- \{using IC blocks as the active amplifying circuit\}
3/45932	. . \{by using feedback means (H03F 3/45968 takes precedence) \}
3/45937 \{Measuring at the loading circuit of the differential amplifier\}
3/45941 \{Controlling the input circuit of the differential amplifier\}
3/45946	. \{Controlling the loading circuit of the differential amplifier\}
3/4595	\{by using feedforward means (H03F 3/45968 takes precedence) \}
3/45955	. . \{Measuring at the input circuit of the differential amplifier\}
3/45959	. \{Controlling the input circuit of the differential amplifier\}
3/45964	. . \{Controlling the loading circuit of th differential amplifier\}
3/45968	\{by offset reduction\}
3/45973	\{by using a feedback circuit\}
3/45977	- \{using switching means, e.g. sample and hold\}
3/45982	\{by using a feedforward circuit\}
3/45986	- \{using switching means, e.g. sample and hold \}
3/45	\{by using balancing means\}
3/45995	. . \{using switching means\}
3/46	- Reflex amplifiers \{(reflection amplifiers H03F 3/608) \}
3/48	with tubes only
3/50	. Amplifiers in which input is applied to, or output is derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower
3/505	. \{with field-effect devices\}
/52	ith tubes only

$\left.\begin{array}{ll}3 / 54 & \\ & \\ & \text { - Amplifiers using transit-time effect in tubes or } \\ & \text { semiconductor devices (parametric amplifiers } \\ & \text { H03F 7/00; solid state travelling-wave devices }\end{array}\right\}$

11/00 Dielectric amplifiers
13/00 Amplifiers using amplifying element consisting of two mechanically- or acoustically-coupled transducers, e.g. telephone-microphone amplifier

2200/177

Amplifiers using superconductivity effects

Subject matter not provided for in other groups of this subclass

Indexing scheme relating to amplifiers

- the amplifier being designed for audio applications
- A balun, i.e. balanced to or from unbalanced converter, being present at the input of an amplifier
- A balun, i.e. balanced to or from unbalanced converter, being present at the output of an amplifier
. A non-specified detector of a signal envelope being used in an amplifying circuit
- A non-specified detector of the power of a signal being used in an amplifying circuit
. A coil being added in the drain circuit of a FET amplifier stage, e.g. for noise reducing purposes
- the amplifier being a dual or triple band amplifier, e.g. 900 and 1800 MHz , e.g. switched or not switched, simultaneously or not
- the amplifier comprising means for electro-magnetic interference [EMI] protection
- A coil being coupled in a feedback path of an amplifier stage
- A bias circuit for some stages being shown using transmission lines
- A transistor in common gate configuration being used in a feedback circuit of an amplifier stage
- A difference signal between an output and an input signal of an amplifier being coupled back at the input of the amplifier
- A diode being coupled in a feedback path of an amplifier stage, e.g. active or passive diode
- there being a feedback over the complete amplifier
- Hybrid coupler placed in a feedback circuit of an amplifier
- there being a feedback over one or more internal stages in the global amplifier
- the feedback circuit comprising a parallel resonance circuit
- the feedback circuit of the amplifier stage comprising a resistor and a capacitor in series, at least one of them being an active one
- the feedback circuit of the amplifier stage comprising a passive resistor and passive capacitor
- the feedback circuit comprising a series resonance circuit
- the supply or bias voltage or current at the drain side of a FET being continuously controlled by a controlling signal
- A source follower being used in a feedback circuit of an amplifier stage
- Feedback used to stabilise the amplifier
. One or more switches are realised in the feedback circuit of the amplifier stage
- the feedback circuit being closed during a switching time
. FETs are biased in the weak inversion region
- A filter circuit coupled to the input of an amplifier
- Two amplifying stages are coupled by means of a filter circuit
. A filter circuit coupled to the output of an amplifier
- Floating gate implemented in MOS technology
- Folded cascode realised by a folding coil

2200/18 . the bias of the gate of a FET being controlled by a control signal
2200/181 . A coil being added in the gate circuit of a FET amplifier stage, e.g. for noise reducing purposes
2200/183 . the amplifier comprising a gated diode
2200/186 . the ground, reference potential being controlled
2200/189 . the ground, reference or shield potential difference between different chips being controlled
2200/192 . A hybrid coupler being used at the input of an amplifier circuit
2200/195 . A hybrid coupler being used as power measuring circuit at the input of an amplifier circuit
2200/198 . A hybrid coupler being used as coupling circuit between stages of an amplifier circuit
2200/201 . A hybrid coupler being used as power measuring inter-stage circuit between two stages of an amplifier circuit
2200/204 . A hybrid coupler being used at the output of an amplifier circuit
2200/207 . A hybrid coupler being used as power measuring circuit at the output of an amplifier circuit
2200/21 . Bias resistors are added at the input of an amplifier
2200/211 - the input of an amplifier can be attenuated by a continuously controlled transistor attenuator
2200/213 . A variable capacitor being added in the input circuit, e.g. base, gate, of an amplifier stage

2200/216 . A coil being added in the input circuit, e.g. base, gate, of an amplifier stage
2200/219 . Follower transistors are added at the input of the amplifier, e.g. source or emitter followers
2200/222 . A circuit being added at the input of an amplifier to adapt the input impedance of the amplifier
2200/225 . the input circuit of an amplifying stage comprising an LC-network
2200/228 - A measuring circuit being coupled to the input of an amplifier
2200/231 - the input of an amplifier can be switched on or off by a switch to amplify or not an input signal
2200/234
2200/237

2200/24

2200/243
2200/246

2200/252

2200/255

2200/258
2200/261 transmission line coupling purposes, e.g. impedance adaptation
. the input of the amplifier has voltage limiting means
Amplifier which being suitable for instrumentation

2200/264

2200/267
2200/27
2200/271

2200/273

2200/276

2200/279

2200/282

2200/285

2200/288
2200/291
2200/294
2200/297

2200/301

2200/303
2200/306

2200/309
2200/31
2200/312
2200/315

2200/318

2200/321

2200/324
2200/327
2200/33
2200/331
2200/333

2200/336
2200/339

2200/342

- An operational amplifier based integrator or transistor based integrator being used in an amplifying circuit
- A capacitor based passive circuit, e.g. filter, being used in an amplifying circuit
- A biasing circuit node being switched in an amplifier circuit
. the DC-isolation amplifier, e.g. chopper amplifier, modulation/demodulation amplifier, uses capacitive isolation means, e.g. capacitors
. the DC-isolation amplifier, e.g. chopper amplifier, modulation/demodulation amplifier, uses inductive isolation means, e.g. transformers
. the DC-isolation amplifier, e.g. chopper amplifier, modulation/demodulation amplifier, uses optical isolation means, e.g. optical couplers
- the level shifting stage between two amplifying stages being realised by an explicit differential amplifier
- the level shifting stage between two amplifying stages being realised by a diode
. the level shifting stage between two amplifying stages being realised by an emitter follower
- the level shifting stage between two amplifying stages being realised by a resistor or potentiometer
- the level shifting stage between two amplifying stages being realised by a source follower
. the amplifier being a low noise amplifier [LNA]
- the loading circuit of an amplifying stage comprising a capacitor
- the loading circuit of an amplifying stage comprising a coil
. the loading circuit of an amplifying stage comprising a diode or diode coupled transistor
- the loading circuit of an amplifying stage being a parallel resonance circuit
- the loading circuit of an amplifying stage being a series resonance circuit
- the switching power stage comprising circuitry for emulating the behaviour of a bootstrap diode
- the loading circuit of an amplifying stage comprising one or more switches
- the loading circuit of an amplifying stage comprising a transmission line
- A matching circuit being used as coupling element between two amplifying stages
- Use of a microprocessor in an amplifier circuit or its control circuit
. An amplitude modulator or demodulator being used in the amplifier circuit
- Amplitude shift keying modulation being used in an amplifying circuit
. Bridge form coupled amplifiers; H-form coupled amplifiers
- Sigma delta modulation being used in an amplifying circuit
- A frequency modulator or demodulator being used in the amplifier circuit
- A I/Q, i.e. phase quadrature, modulator or demodulator being used in an amplifying circuit applications
. Pulse amplitude modulation being used in an amplifying circuit
- Pulse code modulation being used in an amplifying circuit

2200/345	- Pulse density modulation being used in an amplifying circuit	2200/432	Two or more amplifiers of different type are coupled in parallel at the input or output, e.g. a class
2200/348	. Pulse frequency modulation being used in an amplifying circuit		D and a linear amplifier, a class B and a class A amplifier
2200/351	Pulse width modulation being used in an amplifying circuit	2200/435	. A peak detection being used in a signal measuring circuit in a controlling circuit of an amplifier
2200/354	the amplifier comprising MOS which are biased in the moderate inversion region	2200/438	. Separate feedback of amplitude and phase signals being present
2200/357	the amplifier comprising MOS which are biased in the weak inversion region	2200/441	. Protection of an amplifier being implemented by clamping means
2200/36	the amplifier comprising means for increasing the bandwidth	2200/444	. Diode used as protection means in an amplifier, e.g. as a limiter or as a switch
2200/361	ansistor with multiple collectors	2200/447	mplifier being protected to temperature
2200/363	Transistor with multiple emitters		fluence
2200/366	Multiple MOSFETs are coupled in	2200/45	load of the amplifier being a capacitive element,
2200/369	- A negative impedance circuit being added to an amplifier circuit	2200/451	e.g. CRT - the amplifier being a radio frequency amplifier
2200/372	Noise reduction and elimination in amplifier	2200/453	Controlling being realised by adding a replica
2200/375	Circuitry to compensate the offset being present in an amplifier		circuit or by using one among multiple identical circuits as a replica circuit
2200/378	- A variable capacitor being added in the output circuit, e.g. collector, drain, of an amplifier stage	2200/456	- A scaled replica of a transistor being present in an amplifier
2200/381	- An active variable resistor, e.g. controlled transistor, being coupled in the output circuit of an amplifier to control the output	$2200 / 459$ $2200 / 462$. Ripple reduction circuitry being used in an amplifying circuit - the current being sensed
2200/384	. Amplifier without output filter, i.e. directly connected to the load	$\begin{aligned} & 2200 / 465 \\ & 2200 / 468 \end{aligned}$	Power sensing the temperature being sensed
2200/387	- A circuit being added at the output of an amplifier to adapt the output impedance of the amplifier	$\begin{aligned} & 2200 / 471 \\ & 2200 / 474 \end{aligned}$. the voltage being sensed . A current mirror being used as sensor
2200/39	. Different band amplifiers are coupled in parallel to broadband the whole amplifying circuit	$\begin{aligned} & 2200 / 477 \\ & 2200 / 48 \end{aligned}$. Paralleled transistors are used as sensors - the output of the amplifier being coupled out by
2200/391	- the output circuit of an amplifying stage comprising an LC-network	2200/481	capacitor A resistor being used as sensor
2200/393	- A measuring circuit being coupled to the output of an amplifier	$\begin{aligned} & 2200 / 483 \\ & 2200 / 486 \end{aligned}$	- A shunting switch being paralleled to the sensor - the current in the load of an amplifying stage being
2200/396	- the output of an amplifier can be switched on or off by a switch to couple the output signal to a load	2200/489	sensed by a torus A coil being added in the source circuit of a
2200/399	- A parallel resonance being added in shunt in the output circuit, e.g. base, gate, of an amplifier stage	2200/492	common source stage, e.g. as degeneration means - A coil being added in the source circuit of a
2200/402	- A series resonance being added in shunt in the output circuit, e.g. base, gate, of an amplifier stage	2200/495	transistor amplifier stage as degenerating element A parallel resonance circuit being added in the
2200/405	- the output amplifying stage of an amplifier comprising more than three power stages	2200/498	source circuit of a FET amplifier A resistor being added in the source circuit of a
2200/408	- the output amplifying stage of an amplifier comprising three power stages	2200/501	transistor amplifier stage as degenerating element A series resonance circuit being added in the source
2200/411	- the output amplifying stage of an amplifier comprising two power stages	2200/504	circuit of a FET amplifier . the supply voltage or current being continuously
2200/414	. A switch being coupled in the output circuit of an amplifier to switch the output on/off		controlled by a controlling signal, e.g. the controlling signal of a transistor implemented as
2200/417	A switch coupled in the output circuit of an amplifier being controlled by a circuit		variable resistor in a supply path for, an IC-block showed amplifier
2200/42	- the input to the amplifier being made by capacitive coupling means	2200/507	. A switch being used for switching on or off a supply or supplying circuit in an IC-block amplifier circuit
2200/421	. Multiple switches coupled in the output circuit of an amplifier are controlled by a circuit	2200/51	- Capacitor in positive feedback circuit of an amplifier circuit to bootstrap a resistor
2200/423	- Amplifier output adaptation especially for transmission line coupling purposes, e.g. impedance adaptation	2200/511	. Many discrete supply voltages or currents or voltage levels can be chosen by a control signal in an ICblock amplifier circuit
2200/426	- the amplifier comprising circuitry for protection against overload	$\begin{aligned} & 2200 / 513 \\ & 2200 / 516 \end{aligned}$. the amplifier being made for low supply voltages . Some amplifier stages of an amplifier use supply
2200/429	- Two or more amplifiers or one amplifier with filters for different frequency bands are coupled in parallel at the input or output	2200/519	voltages of different value . the bias or supply voltage or current of the drain side of a FET amplifier being controlled to be on or off by a switch

2200/522	the bias or supply voltage or current of the gate side of a FET amplifier being controlled to be on or off by a switch
2200/525	. the bias or supply voltage or current of the source side of a FET amplifier being controlled to be on or off by a switch
2200/528	- the temperature dependence being controlled by referencing to the band gap
2200/531	- the temperature difference between different chips being controlled
2200/534	. Transformer coupled at the input of an amplifier
2200/537	. A transformer being used as coupling element between two amplifying stages
2200/54	. Two or more capacitor coupled amplifier stages in cascade
2200/541	- Transformer coupled at the output of an amplifier
2200/543	- A transmission line being used as coupling element between two amplifying stages
2200/546	- A tunable capacitance being present in an amplifier circuit
2200/549	- the amplifier comprising means to emulate the vacuum tube behaviour
2200/552	- the amplifier being made for video applications
2200/555	. A voltage generating circuit being realised for biasing different circuit elements
2200/57	- Separate feedback of real and complex signals being present
2200/61	. the cascode amplifier has more than one common gate stage
2200/63	- the amplifier being suitable for CATV applications
2200/66	. Clipping circuitry being present in an amplifier, i.e. the shape of the signal being modified
2200/69	- the amplifier stage being a common drain coupled MOSFET, i.e. source follower
2200/72	- the amplifier stage being a common gate configuration MOSFET
2200/75	. the amplifier stage being a common source configuration MOSFET
2200/78	- A comparator being used in a controlling circuit of an amplifier
2200/81	. Inputs or outputs are crossed during a first switching time, not crossed during a second switching time
2200/84	- A cross coupling circuit being realized by current mirrors
2200/87	- the cross coupling circuit being realised only by MOSFETs
2200/91	. the amplifier has a current mode topology
2200/93	- Two or more transistors are coupled in a Darlington composite transistor configuration, all transistors being of the same type
2200/96	- Two or more complementary transistors are coupled in a Darlington composite transistor configuration
2200/99	- A diode as rectifier being used as a detecting circuit in an amplifying circuit
2201/00	Indexing scheme relating to details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements covered by H03F 1/00
2201/32	- Indexing scheme relating to modifications of amplifiers to reduce non-linear distortion
2201/3203	. . the amplifier comprising means for back off control in order to reduce distortion

$2201 / 3206$. .	Multiple channels are combined and amplified by only one amplifier
$2201 / 3209$. . the amplifier comprising means for compensating	
	memory effects	

2203/21136	An input signal of a power amplifier being on/off switched
2203/21139 An impedance adaptation circuit being added at the output of a power amplifier stage
2203/21142	. Output signals of a plurality of power amplifiers are parallel combined to a common output
2203/21145	. Output signals are combined by switching a plurality of paralleled power amplifiers to a common output
2203/21148	. An output signal of a power amplifier being controlled by controlling current signal, e.g. by controlled current mirror
2203/21151	. . An output signal of a power amplifier being controlled by controlling power signal, e.g. by an inductive coupler
2203/21154	- An output signal of a power amplifier being controlled by controlling voltage signal
2203/21157	. A filter circuit being added at the output of a power amplifier stage
2203/21161	. An output signal dependant signal being measured by current measuring at the output of a power amplifier
2203/21163	- An output signal dependant signal being measured by power measuring, e.g. by an inductive coupler, at the output of a power amplifier
2203/21166	. An output signal dependant signal being measured by voltage measuring at the output of a power amplifier
2203/21169	. . A parallel resonance circuit being coupled at the output of a power amplifier
2203/21172	- A series resonance circuit being coupled at the output of a power amplifier
2203/21175	- An output signal of a power amplifier being on/off switched
2203/21178	. . Power transistors are made by coupling a plurality of single transistors in parallel
2203/21181	. the supply current of a power amplifier being continuously controlled, e.g. by controlling current sources or resistors
2203/21184	the supply current of a power amplifier being continuously measured, e.g. by a resistor, a current mirror, to produce a controlling signal
2203/21187	. . the supply current of a power amplifier being measured discontinuously in time, e.g. by sampling, to produce a controlling signal
2203/21191	. the supply current of a power amplifier being switchable controlled, e.g. by choosing different current sources or resistors
2203/21193 the supply voltage of a power amplifier being continuously controlled, e.g. by an active potentiometer
2203/21196	. the supply voltage of a power amplifier being switchable controlled
2203/30	. Indexing scheme relating to single-ended push-pull [SEPP]; Phase-splitters therefor
2203/30003	. . the SEPP amplifier stage comprising calibration possibility
2203/30006	. . the push and the pull stages of the SEPP amplifier are both current mirrors
2203/30009	. . the push and pull stages of the SEPP amplifier are both cascode current mirrors

2203/30012 . . the two SEPP amplifying transistors are Darlington composite transistors
2203/30015
2203/30018

2203/30021

2203/30024

2203/30027
2203/30031
2203/30033

2203/30036

2203/30039

2203/30042

2203/30045

2203/30048

2203/30051
2203/30054

2203/30057
2203/30061

2203/30063

2203/30066

2203/30069

2203/30072
2203/30075

2203/30078

2203/30099

An input signal dependent control signal controls the bias of an output stage in the SEPP
. . A series coupled active resistor and capacitor are coupled in a feedback circuit of a SEPP amplifier

- A capacitor being coupled in a feedback circuit of a SEPP amplifier
. . the SEPP bias current being controlled by a control signal from a feedback circuit
. . the SEPP bias voltage being controlled by a control signal from a feedback circuit
. . A resistor being coupled as feedback circuit in the SEPP amplifier
. . A series coupled resistor and capacitor are coupled in a feedback circuit of a SEPP amplifier
. . A feedback circuit to stabilise the SEPP being used
. . the SEPP bias current being controlled by a control signal from a feedforward circuit
. . the SEPP bias voltage being controlled by a control signal from a feedforward circuit the SEPP power transistors comprising measuring push or pull transistors to produce a controlling signal
. . the SEPP amplifier has multiple SEPP outputs from paralleled output stages coupled in one or more outputs
. . the SEPP amplifying transistors are composed of multiple coupled transistors
. . the SEPP power transistors are realised as paralleled cascode coupled transistors, i.e. the push or the pull transistors
- . the SEPP power transistors are realised as paralleled FETs, i.e. the push or the pull transistor
. . One or more current mirrors are used as bias circuit or stages for the push or pull stages
. . A differential amplifier being used in the bias circuit or in the control circuit of the SEPPamplifier
- A optical element being used in the bias circuit of the SEPP-amplifier
. . A SEPP amplifier with a reactive element in the bias circuit
- the SEPP has a power supply switchable by a controlling signal derived from the input signal the SEPP has a power supply switchable by a controlling signal derived from the output signal
. . A resistor being added in the pull stage of the SEPP amplifier
. . the pull transistor circuit comprising one or more capacitors
. . the pull circuit of the SEPP amplifier being a cascode circuit
. . Only the bias of the pull transistor of the SEPP being dynamically controlled by the input signal
. . the pull side of the SEPP amplifier has an extra drive follower stage to control this pull side
. . the pull side of the SEPP amplifier has an extra drive inverter stage to control this pull side
. . An op amp being used as extra drive amp for the pull side of the SEPP
. . the pull transistor being gated by a switching element

| $2203 / 30102$ | - . the pull transistor has a measuring transistor for |
| :--- | :--- | :--- |
| controlling purposes | |

3/45018	the differential amplifier amplifying transistors have added cross couplings
2203/45021	. . One or more added diodes to the amplifying transistors in the differential amplifier
2203/45022	. . One or more added resistors to the amplifying transistors in the differential amplifier
2203/45024	. . the differential amplifier amplifying transistors are cascode coupled transistors
2203/45026	. . One or more current sources are added to the amplifying transistors in the differential amplifier
2203/45028	. . the differential amplifier amplifying transistors are folded cascode coupled transistors
2203/45031	. . the differential amplifier amplifying transistors are compositions of multiple transistors
2203/45032	. . the differential amplifier amplifying transistors are multiple paralleled transistors
2203/45034	. . One or more added reactive elements, capacitive or inductive elements, to the amplifying transistors in the differential amplifier
2203/45036	. . the differential amplifier amplifying transistors are single transistors
2203/45038	. . One or more current sources are added or changed as balancing means to reduce the offset of the dif amp
2203/45041	. . Fuses are blown to balance the dif amp to reduce the offset of the dif amp
2203/45042	. . One or more resistors are added or changed as balancing to reduce the offset of the dif amp
2203/45044	. . One or more switches are opened or closed to balance the dif amp to reduce the offset of the dif amp
2203/45046	. . the base current of the amplifying transistors of a dif amp being compensated for providing a greater input impedance of the amplifier
2203/45048	Calibrating and standardising a dif amp
2203/45051	. Two or more differential amplifiers cascade coupled
2203/45052	. . the cascode stage of the cascode differential amplifier being controlled by a controlling signal, which controlling signal can also be the input signal
2203/45054	. . the cascode stage of the cascode dif amp being a current mirror
2203/45056	. . One or both transistors of the cascode stage of a differential amplifier being composed of more than one transistor
2203/45058	. . the cascode stage of the differential amplifier comprising a reactive element
2203/45061	. . the common mode reference signal being taken or deducted from the one or more inputs of the differential amplifier
2203/45062	. . the common mode signal, e.g. voltage or current being added to the cascode stage of the cascode or folded cascode differential amplifier
2203/45064	. . the resulting deducted common mode signal being added to the folding circuit of the folded differential amplifier
2203/45066	. . the resulting deducted common mode signal being added at the one or more inputs of the differential amplifier
2203/45068	. . the resulting deducted common mode signal being added at the one or more outputs of the differential amplifier

$\left.\begin{array}{ll}2203 / 45071 & \text {. . the resulting deducted common mode signal } \\ \text { being added at the substrate or body regions of } \\ \text { the components of the differential amplifier }\end{array}\right\}$

2203/45121 . . A floating gate element being part of a dif amp
2203/45122 . . the folded cascode stage of the folded cascode differential amplifier being controlled by a controlling signal
2203/45124

2203/45126

2203/45128
2203/45131

2203/45132

2203/45138

2203/45141
2203/45142

2203/45144

2203/45146

2203/45148

2203/45151
2203/45152

2203/45154
2203/45156

2203/45158
2203/45161

2203/45162

2203/45164

2203/45166
2203/45168
2203/45171

2203/45172
2203/45174

2203/45176 the folded cascode stage of the folded cascode dif amp being a current mirror
. . One or both transistors of the folded cascode stage of a folded cascode dif amp are composed of more than one transistor
. the folded cascode stage of the folded cascode dif amp contains a reactive element A follower being added between the dif amp and other explicit stages in the amplifying circuit

- . A source follower using multiple single follower stages cascaded in a composed follower being added to the dif amp
. the whole differential amplifier together with other coupled stages being fully differential realised
- One differential amplifier in IC-block form being shown
. . Two or more differential amplifiers in IC-block form are combined, e.g. measuring amplifiers
. A cross coupled pair of transistors being added in the input circuit of a differential amplifier
. . At least one diode being added at the input of a dif amp
. . At least one follower being added at the input of a dif amp
. . At least one op amp being added at the input of a dif amp input of a dif amp
- At least one resistor being added at the input of a dif amp
. . Balancing means being added at the input of a dif amp to reduce the offset of the dif amp
. . the bias at the input of the amplifying transistors being controlled
. . At least one capacitor being added at the input of a dif amp
. . One or more diodes coupled at the inputs of a dif amp as clamping elements
. . One or more diodes coupled at the inputs of a dif amp as level shifting circuit elements
. . A parallel resonance circuit being added in the one or more input circuits of the dif amp
. . A series resonance circuit being added in the one or more input circuits of the dif amp Only one input of the dif amp being used for an input signal
. . A dif amp being used as input stage to one or more other non-differential stages the input signal being switched to the one or more input terminals of the differential amplifier
. . A transformer being added at the input of the dif amp
. . the application of the differential amplifier being in an integrator circuit
. . A cross coupling circuit, e.g. consisting of two cross coupled transistors, being added in the load circuit of the amplifying transistors of a differential amplifier
$2203 / 45178$. . the differential amplifier contains one or more
extra resistors in the active load circuit

2203/45232 . . Two dif amps of the folded cascode type are paralleled at their input gates or bases
2203/45234 . . Two dif amps, one of them being of the cascade type and the other one of the folded cascade type, are paralleled at their input gates or bases
2203/45236 . . Two dif amps realised in MOS or JFET technology, one of them being of the p-channel type and the other one of the n -channel type, are coupled in parallel with their gates
2203/45238 . . Two dif amps realised in FET technology, the dif amps being either both of the NMOS type or both of the PMOS type, are coupled in parallel with their gates and their drains
2203/45241 . . Two dif amps realised in MOS or JFET technology, the dif amps being either both of the p-channel type or both of the n-channel type, are coupled in parallel with their gates
2203/45242 . . Two dif amps are paralleled at their inputs, the dif amps being of different types, e.g. one long tail type and one complementary or pi type
2203/45244 . . the differential amplifier contains one or more explicit bias circuits, e.g. to bias the tail current sources, to bias the load transistors
2203/45246 . . the dif amp being biased in the subthreshold region
2203/45248 . . the dif amp being designed for improving the slew rate
2203/45251 . . the dif amp has a cross coupling circuit in the source circuit of the amplifying transistors
2203/45252 . . Diodes are added in the source circuit of the amplifying FETs of the dif amp
2203/45254 . . A parallel resonance circuit being added in the one or more source circuits of the amplifying FETs of the dif amp
2203/45256 . . One or more reactive elements are added in the source circuit of the amplifying FETs of the dif amp
2203/45258 . . Resistors are added in the source circuit of the amplifying FETs of the dif amp
2203/45261 . . A series resonance circuit being added in the one or more source circuits of the amplifying FETs of the dif amp

2203/45262

2203/45264
2203/45266
2203/45268 . . A common gate stage being coupled at the one or more outputs of the dif amp
2203/45271 . . the output current being reduced by a transistor which being controlled by the input signal to sink current
2203/45272 . . the output current being increased by a transistor which being controlled by the input signal to source current
2203/45274 . . Level shifting stages are added to the differential amplifier at a position other than the one or more inputs of the dif amp
2203/45276
. . An op amp as stage being coupled to the output of a dif amp
2203/45278
the two amplifying FETs, amplifying two complementary input signals, are not source coupled, i.e. no tail being present
. . the dif amp comprising frequency or phase stabilisation means
. . the stage cascaded to the dif amp being an asymmetrical follower stage

2203/45271
. . Two SEPP stages are added to the differential amplifier, the outputs of the two SEPP stages being the two outputs of the whole amplifier

$2203 / 45281$. . One SEPP output stage being added to the
differential amplifier	

$2203 / 45338$. . the AAC comprising one or more series circuits
of a resistor and a capacitor as feedback circuit	
elements	

$2203 / 45386$. . the AAC comprising one or more coils in the
source circuit	

| $2203 / 45452$ | . . the CSC comprising balancing means |
| :--- | :--- | :--- |
| $2203 / 45454$ | . . the CSC comprising biasing means controlled by |
| | |
| the input signal | |

$2203 / 45522$. . the FBC comprising one or more potentiometers
$2203 / 45524$. the FBC comprising one or more active resistors
and being coupled between the LC and the IC	

$2203 / 45588$. . the IC comprising offset compensating means	
$2203 / 45591$. . the IC comprising one or more potentiometers	
$2203 / 45592$. . the IC comprising one or more buffer stages other	
		than emitter or source followers between the input
signal leads and input leads of the dif amp, e.g.		
inverter stages		

2203/45656	- the LC comprising one diode of a current mirror,
2203/45658	. . the LC comprising two diodes of current mirrors
2203/45661	. . the LC comprising one or more controlled floating gates
2203/45662	. . the LC comprising inductive coupled loading elements
2203/45664	- . the LC comprising one or more cascaded inverter stages as output stage at one output of the dif amp circuit
2203/45666	. . the LC comprising two anti-phase controlled inverter circuits as output stages, e.g. fully differential
2203/45668	. . the LC comprising a level shifter circuit, which does not comprise diodes
2203/45671	. . the LC comprising one or more diodes as level shifter
2203/45672	- . the LC comprising one or more resistors as level shifter
2203/45674	- . the LC comprising one current mirror
2203/45676	- . the LC comprising one cascode current mirror
2203/45678	- . the LC comprising offset generating means
2203/45681	. . the LC comprising offset compensating means
2203/45682	- the LC comprising one or more op-amps
2203/45684	- . the LC comprising one or more buffers or driving stages not being of the emitter respectively source follower type, between the output of the dif amp and the output stage
2203/45686	. . the LC comprising one or more potentiometers, which are not shunting potentiometers
2203/45688	- . the LC comprising one or more shunting potentiometers
2203/45691	- . the LC comprising one or more transistors as active loading resistors
2203/45692	. . the LC comprising one or more resistors in series with a capacitor coupled to the LC by feedback
2203/45694	- . the LC comprising more than one shunting resistor
2203/45696	. . the LC comprising more than two resistors
2203/45698	. . the LC comprising one or more resistors coupled to the LC by feedback (active or passive)
2203/45701	. . the LC comprising one resistor
2203/45702	- . the LC comprising two resistors
2203/45704	- . the LC comprising one or more parallel resonance circuits
2203/45706	. . the LC comprising one or more series resonance circuits
2203/45708	. . the LC comprising one SEPP circuit as output stage
2203/45711	- . the LC comprising two anti-phase controlled SEPP circuits as output stages, e.g. fully differential
2203/45712	. . the LC comprising a capacitor as shunt
2203/45714	. . the LC comprising a coil as shunt
2203/45716	. . the LC comprising a RC-series circuit as shunt, e.g. for stabilisation
2203/45718	- . the LC comprising a resistor as shunt
2203/45721	. . the LC comprising only an output circuit for one phase of the signal
2203/45722	. . the LC comprising one or more source followers, as post buffer or driver stages, in cascade in the LC
2203/45724	- . the LC comprising two cross coupled switches

2203/45726

2203/45728
2203/45731
2203/45732 2203/50

2203/5006
2203/5009
2203/5012

2203/5015

2203/5018

2203/5021
2203/5024

2203/5027

2203/5031
2203/5033

2203/5036
2203/5039

2203/5042
2203/5045

2203/72

2203/7203

2203/7206

2203/7209

2203/7212

2203/7215

2203/7218

2203/7221
. . the LC comprising more than one switch, which are not cross coupled
. . the LC comprising one switch
. . the LC comprising a transformer
. . the LC comprising a voltage generating circuit

- Indexing scheme relating to amplifiers in which input being applied to, or output being derived from, an impedance common to input and output circuits of the amplifying element, e.g. cathode follower
. the sources of two source followers are differentially coupled
. . the input signal being capacitively coupled to the gate of the source follower
. . the output signal being capacitively coupled to the source of the source follower
. . the source follower has a controlled source circuit, the controlling signal being derived from the drain circuit of the follower
. . the source follower has a controlled source circuit, the controlling signal being derived from the gate circuit of the follower
. . the source follower has a controlled source circuit, the controlling signal being derived from the source circuit of the follower
. . the source follower has a controlled source circuit
. . the source follower has a controlled source circuit, the source circuit being controlled via a capacitor, i.e. AC-controlled
. . the source follower has a current mirror output circuit in its source circuit
. . the source circuit of the follower being a current source
. . Two source followers are controlled at their inputs by a differential signal
. . the source follower has a resistor in its source circuit
. . the source circuit of the follower has one or more capacitors between source and supply
. . the source circuit of the follower has one or more coils between source and supply
. . the source follower has a level shifter between source and output, e.g. a diode-connected transistor
. Indexing scheme relating to gated amplifiers, i.e. amplifiers which are rendered operative or inoperative by means of a control signal
. . the gated amplifier being switched on or off by a switch in the bias circuit of the amplifier controlling a bias current in the amplifier
. . the gated amplifier being switched on or off by a switch in the bias circuit of the amplifier controlling a bias voltage in the amplifier
. . the gated amplifier being switched from a first band to a second band
. . the gated amplifier being switched on or off by switching off or on a feedback control loop of the amplifier
. . the gated amplifier being switched on or off by a switch at the input of the amplifier
. . the gated amplifier being switched on or off by clamping by a switch at the input of the amplifier
. . the gated amplifier being switched on or off by a switch at the output of the amplifier

2203/7224 . . the gated amplifier being switched on or off by clamping by a switch at the output of the amplifier
2203/7227 . . the gated amplifier being switched on or off by a switch in the supply circuit of the amplifier
2203/7231 . . the gated amplifier being switched on or off by putting into cascade or not, by choosing between amplifiers by one or more switch(es) putting into parallel or not, by choosing between amplifiers by one or more switch(es), being impedance adapted by switching an adapted passive network putting into parallel or not, by choosing between amplifiers by (a) switch(es)
. the gated amplifier being switched on or off by putting into parallel or not, by choosing between amplifiers and shunting lines by one or more switch(es)

