CPC

COOPERATIVE PATENT CLASSIFICATION

H
 H03
 ELECTRICITY
 (NOTE omitted)
 ELECTRONIC CIRCUITRY

PULSE TECHNIQUE (measuring pulse characteristics G01R; modulating sinusoidal oscillations with pulses H 03 C ; transmission of digital information H04L; discriminator circuits detecting phase difference between two signals by counting or integrating cycles of oscillation H03D 3/04; automatic control, starting, synchronisation or stabilisation of generators of electronic oscillations or pulses where the type of generator is irrelevant or unspecified H03L; coding, decoding or code conversion, in general H03M)

NOTES

1. This subclass covers:

- methods, circuits, devices or apparatus using active elements operating in a discontinuous or switching manner for generating, counting, amplifying, shaping, modulating, demodulating or otherwise manipulating signals;
- electronic switching not involving contact-making and braking;
- logic circuits handling electric pulses.

2. In this subclass, the following expression is used with the meaning indicated:

- "active element" exercises control over the conversion of input energy into an oscillation or a discontinuous flow of energy.

3. In this subclass, where the claims of a patent document are not limited to a specific circuit element, the document is classified at least according to the elements used in the described embodiment.

WARNINGS

1. The following IPC groups are not in the CPC scheme. The subject matter for these IPC groups is classified in the following CPC groups: H03K 17/695 covered by H03K 17/687
2. In this subclass non-limiting references (in the sense of paragraph 39 of the Guide to the IPC) may still be displayed in the scheme.

Circuits for generating electric pulses; Monostable, bistable or multistable circuits (H03K 4/00 takes precedence; for digital function generators in computers G06F 1/02)
. Details

- Modifications of generator to compensate for variations in physical values, e.g. voltage, temperature \{(to maintain energy constant H03K 3/015) \}
- Modifications of generator to improve response time or to decrease power consumption
- Modifications of generator to prevent operation by noise or interference
- . Modifications of generator to ensure starting of oscillations
. Modifications of generator to maintain energy constant
- . Adjustment of width or dutycycle of pulses (pulse width modulation H03K 7/08 \{; to maintain energy constant H03K 3/015\})
- Generators characterised by the type of circuit or by the means used for producing pulses
(H03K 3/64 - H03K 3/84 take precedence)
. . by the use, as active elements, of more than one type of element or means, e.g. BIMOS, composite devices such as IGBT

3/023	. . by the use of differential amplifiers or comparators, with internal or external positive feedback
3/0231	. . . Astable circuits $\{($ H03K 3/0315 takes precedence) $\}$
3/02315	. . . $\{$ Stabilisation of output, e.g. using crystal $\}$
3/0232	Monostable circuits
3/0233	- Bistable circuits
3/02332	. . . $\{$ of the master-slave type $\}$
3/02335 \{provided with means for increasing reliability; for protection; for ensuring a predetermined initial state when the supply voltage has been applied; for storing the actual state when the supply voltage fails (digital storage cells each combining volatile and non-volatile storage properties G11C 14/00) \}
3/02337	-••• \{Bistables with hysteresis, e.g. Schmitt trigger (non-regenerative amplitude discriminators G01R 19/165) \}
3/0234	Multistable circuits
3/027	. . by the use of logic circuits, with internal or external positive feedback
3/03	. . . Astable circuits
3/0307	. . . $\{$ Stabilisation of output, e.g. using crystal $\}$
3/0315	. . . \{Ring oscillators \}

3/0322	\{with differential cells \}
3/033	Monostable circuits
3/037	. Bistable circuits
3/0372	. \{of the master-slave type\}
3/0375 \{provided with means for increasing reliability; for protection; for ensuring a predetermined initial state when the supply voltage has been applied; for storing the actual state when the supply voltage fails (digital storage cells each combining volatile and non-volatile storage properties G11C 14/00) \}
3/0377 \{Bistables with hysteresis, e.g. Schmitt trigger (non-regenerative amplitude discriminators G01R 19/165) \}
3/038	Multistable circuits
3/04	. . by the use, as active elements, of vacuum tubes only, with positive feedback (H03K 3/023, H03K 3/027 take precedence)
3/05	. . . using means other than a transformer for feedback
3/06 using at least two tubes so coupled that the input of one is derived from the output of another, e.g. multivibrator
3/08	astable
3/09	. Stabilisation of output
3/10	monostable
3/12	. bistable
3/13 Bistables with hysteresis, e.g. Schmitt trigger
3/14	multistable
3/16	. . . using a transformer for feedback, e.g. blocking oscillator with saturable core
3/22 specially adapted for amplitude comparison, i.e. Multiar
3/26	. . by the use, as active elements, of bipolar transistors with internal or external positive feedback (H03K 3/023, H03K 3/027 take precedence)
3/28	. . . using means other than a transformer for feedback
3/281 using at least two transistors so coupled that the input of one is derived from the output of another, e.g. multivibrator
3/282	astable
3/2821 $\{$ Emitters connected to one another by using a capacitor\}
3/2823 \{using two active transistor of the same conductivity type (H03K 3/2821 takes precedence) $\}$
3/2825 in an asymmetrical circuit configuration $\}$
3/2826 \{using two active transistors of the complementary type (H03K 3/2821 take precedence)\}
3/2828 \{in an asymmetrical circuit configuration $\}$
3/283 Stabilisation of output $\{$, e.g. using crystal $\}$
3/284	monostable
3/286	bistable

3/2865 \{ensuring a predetermined initial state when the supply voltage has been applied; storing the actual state when the supply voltage fails (digital storage cells each combining volatile and nonvolatile storage properties G11C 14/00)
3/287 using additional transistors in the feedback circuit (H03K 3/289 takes precedence)
3/288	. . using additional transistors in the input circuit (H03K 3/289 takes precedence)
3/2885 the input circuit having a differential configuration
3/289	. . . of the master-slave type
3/2893 Bistables with hysteresis, e.g. Schmitt trigger
3/2897 with an input circuit of differential configuration
3/29	. . . multistable
3/30	. . . using a transformer for feedback, e.g. blocking oscillator
3/313	. . by the use, as active elements, of semiconductor devices with two electrodes, one or two potential barriers, and exhibiting a negative resistance characteristic
3/315	. the devices being tunnel diodes
3/33	. . by the use, as active elements, of semiconductor devices exhibiting hole storage or enhancement effect
3/335	. . by the use, as active elements, of semiconductor devices with more than two electrodes and exhibiting avalanche effect
3/35	. . by the use, as active elements, of bipolar semiconductor devices with more than two PN junctions, or more than three electrodes, or more than one electrode connected to the same conductivity region (H03K 3/023, H03K 3/027 take precedence)
3/351	. . . the devices being unijunction transistors (H03K 3/352 takes precedence)
3/352	. the devices being thyristors
3/3525 Anode gate thyristors or programmable unijunction transistors
3/353	. . by the use, as active elements, of field-effect transistors with internal or external positive feedback (H03K 3/023, H03K 3/027 take precedence)
3/354	Astable circuits
3/3545	. \{Stabilisation of output, e.g. using crystal\}
3/355	. Monostable circuits
3/356	Bistable circuits
3/356008 \{ensuring a predetermined initial state when the supply voltage has been applied; storing the actual state when the supply voltage fails (digital storage cells each combining volatile and non-volatile storage properties G11C 14/00) $\}$
3/356017 \{using additional transistors in the input circuit (H03K 3/356104, H03K 3/3562 take precedence) $\}$
3/356026 \{with synchronous operation (H03K 3/356034, H03K 3/356052 take precedence) $\}$
3/356034 \{the input circuit having a differential configuration \}

3/356043	\{with synchronous operation\}	3/55
3/356052	- \{using pass gates \}	
3/35606	. \{with synchronous operation\}	3/57
3/356069	. . . \{using additional transistors in the feedback circuit (H03K 3/356104, H03K 3/3562 take precedence) $\}$	3/59
3/356078	. . . \{with synchronous operation\}	3/64
3/356086	. . . \{with additional means for controlling the main nodes (H03K 3/356104, H03K 3/3562 take precedence) $\}$	$\begin{aligned} & 3 / 66 \\ & 3 / 70 \end{aligned}$
3/356095	. . . \{with synchronous operation\}	
3/356104	. . . \{using complementary field-effect transistors (H03K 3/35625 takes precedence) \}	$\begin{aligned} & 3 / 72 \\ & 3 / 78 \end{aligned}$
3/356113 \{using additional transistors in the input circuit\}	3/80
3/356121 \{with synchronous operation (H03K 3/35613, H03K 3/356147 take precedence) $\}$	
3/35613 \{the input circuit having a differential configuration $\}$	3/84
3/356139 \{with synchronous operation\}	
3/356147	- \{using pass gates \}	3/86
3/356156	. . . \{with synchronous operation\}	
3/356165 \{using additional transistors in the feedback circuit\}	4/00
3/356173 \{with synchronous operation\}	4/02
3/356182 \{with additional means for controlling the main nodes\}	4/023
3/356191 \{with synchronous operation\}	4/026
3/3562	. of the master-slave type	4/04
3/35625 \{using complementary field-effect transistors $\}$	$4 / 06$ $4 / 063$
3/3565	. Bistables with hysteresis, e.g. Schmitt trigger	4/066
3/3568	. Multistable circuits	
3/357	. . by the use, as active elements, of bulk negative resistance devices, e.g. Gunn-effect devices	$4 / 08$ 4/085
3/36	. . by the use, as active elements, of semiconductors, not otherwise provided for	4/10
3/37	. . by the use, as active elements, of gas-filled tubes, e.g. astable trigger circuits (H03K 3/55 takes precedence)	4/14
3/38	. . by the use, as active elements, of superconductive devices	4/16
3/40	. . by the use, as active elements, of electrochemical cells	
3/42	. . by the use, as active elements, of opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled	4/18
3/43	. . by the use, as active elements, of beam deflection tubes	4/20
3/45	. . by the use, as active elements, of non-linear magnetic or dielectric devices	4/22
3/455	. . . \{using thin films	4/24
3/47	. . . the devices being parametrons	4/26
3/49	. . . the devices being ferro-resonant	
3/51	. . . the devices being multi-aperture magnetic cores, e.g. transfluxors	4/28
3/53	. . by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback (H03K 3/335 takes precedence)	$4 / 32$ $4 / 34$
3/537	. . . the switching device being a spark gap	
3/543	. . the switching device being a vacuum tube	

. . . the switching device being a gas-filled tube having a control electrode
. . . the switching device being a semiconductor device
. . by the use of galvano-magnetic devices, e.g. Hall effect devices

- Generators producing trains of pulses, i.e. finite sequences of pulses
. . by interrupting the output of a generator
. . . time intervals between all adjacent pulses of one train being equal
. . with means for varying repetition rate of trains
- Generating a single train of pulses having a predetermined pattern, e.g. a predetermined number
- Generating trains of sinusoidal oscillations (by keying or interruption of sinusoidal oscillations H03C; for transmission of digital information H04L)
. Generating pulses having a predetermined statistical distribution of a parameter, e.g. random pulse generators
- Generating pulses by means of delay lines and not covered by the preceding subgroups

Generating pulses having essentially a finite slope or stepped portions

. having stepped portions, e.g. staircase waveform
. . \{by repetitive charge or discharge of a capacitor, analogue generators\}
. . \{using digital techniques\}

- having parabolic shape
- having triangular shape
- . \{high voltage - or current generators \}
. . \{using a Miller-integrator (H03K 4/08 takes precedence) $\}$
. . having sawtooth shape
. . . \{Protection of sawtooth generators \}
. . . using as active elements vacuum tubes only
. . . . in which a sawtooth voltage is produced across a capacitor
. using two tubes so coupled that the input of each one is derived from the output of the other, e.g. multivibrator using a single tube with positive feedback through transformer, e.g. blocking oscillator using a single tube exhibiting negative resistance between two of its electrodes, e.g. transitron, dynatron using a tube with negative feedback by capacitor, e.g. Miller integrator
. combined with transitron, e.g. phantastron, sanatron
. Boot-strap generators
. . . . in which a sawtooth current is produced through an inductor
. using a tube operating as a switching device
. combined with means for generating the driving pulses
. using a single tube with positive feedback through a transformer

4/36 using a single tube exhibiting negative resistance between two of its electrodes, e.g. transitron, dynatron	4/83	using as active elements semiconductor devices with more than two PN junctions or with more than three electrodes or more than one
4/38	combined with Miller integrator		ctrode connected to the same conductivity
4/39	using a tube operating as an amplifier		region
$4 / 41$ $4 / 43$ with negative feedback through a capacitor, e.g. Miller-integrator	4/835	- \{using pulse-modulation techniques for the generation of the sawtooth wave, e.g. class D, switched mode \}
4/48	driving pulses using as active elements semiconductor devices (H03K 4/787-H03K 4/84 take precedence)	4/84 Generators in which the semiconductor device is conducting during the fly-back part of the cycle $\{(\mathrm{H} 03 \mathrm{~K} 4 / 835$ takes
4/50 in which a sawtooth voltage is produced across a capacitor	4/86	precedence) $\}$. using as active elements gas-filled tubes $\{$ or spark-gaps \}
4/501 the starting point of the flyback period being determined by the amplitude of the voltage across the capacitor, e.g. by a comparator	4/88	using as active elements electrochemical cells \{or galvano-magnetic or photo-electric elements $\}$
4/502	. . . the capacitor being charged from a constant-current source	4/90	. . Linearisation of ramp (modifying slopes of pulses $\mathrm{H} 03 \mathrm{~K} 6 / 04$; scanning distortion
4/52 using two semiconductor devices so coupled that the input of each one is derived from the output of the other, e.g. multivibrator	4/92	correction for television receivers $\mathrm{H} 04 \mathrm{~N} 3 / 23$); Synchronisation of pulses - having a waveform comprising a portion of a sinusoid (generating sinusoidal oscillations H03B)
4/54	using a single semiconductor device with	4/94	- having trapezoidal shape
4/56	positive feedback through a transformer, e.g. blocking oscillator using a semiconductor device with negative feedback through a capacitor, e.g. Miller integrator	5/00	Manipulating of pulses not covered by one of the other main groups of this subclass (circuits with regenerative action $\underline{H 03 \mathrm{~K} 3 / 00, ~ H 03 \mathrm{~K} 4 / 00 \text {; by }}$ the use of non-linear magnetic or dielectric devices H03K 3/45)
4/58	Boot-strap generators		
4/60	. . . in which a sawtooth current is produced through an inductor		NOTE In this group, the input signals are of the pulse
4/62 using a semiconductor device operating as a switching device		type.
4/625 \{using pulse-modulation techniques for the generation of the sawtooth wave,	5/00006	- \{Changing the frequency (modulating pulses H03K 7/00; frequency dividers H03K 21/00-H03K 29/00; additive or subtractive
4/64	e.g. class D, switched mode\} combined with means for generating the driving pulses $\{(\mathrm{H} 03 \mathrm{~K} 4 / 625$ takes precedence) $\}$	2005/00013	mixing of two pulse rates into one G06F 7/605; pulse rate dividers G06F 7/68) \} - \{Delay, i.e. output pulse is delayed after input pulse
4/66 using a single device with positive feedback, e.g. blocking oscillator		and pulse length of output pulse is dependent on pulse length of input pulse\}
4/68 Generators in which the switching device is conducting during the fly-back part of the cycle	$\begin{aligned} & 2005 / 00019 \\ & 2005 / 00026 \end{aligned}$. . \{Variable delay . . . \{controlled by an analog electrical signal, e.g. obtained after conversion by a D/A converter $\}$
4/69	. . using a semiconductor device operating as an amplifier	$\begin{aligned} & 2005 / 00032 \\ & 2005 / 00039 \end{aligned}$ \{Dc control of switching transistors\} \{having four transistors serially\}
4/693	. . \{operating in push-pull, e.g. class B (H03K 4/696 takes precedence) \}	2005/00045	- $\{\mathrm{Dc}$ voltage control of a capacitor or of the coupling of a capacitor as a load \}
4/696 \{using means for reducing power dissipation or for shortening the flyback time, e.g. applying a higher voltage during flyback time	$2005 / 00052$ $2005 / 00058$ \{by mixing the outputs of fixed delayed signals with each other or with the input signal\} . . . \{controlled by a digital setting\}
4/71 with negative feedback through a capacitor, e.g. Miller-integrator	2005/00065	- \{by current control, e.g. by parallel current control transistors \}
4/72 combined with means for generating the driving pulses	$\begin{aligned} & 2005 / 00071 \\ & 2005 / 00078 \end{aligned}$ \{by adding capacitance as a load \} . . \{Fixed delay $\}$
4/725 \{Push-pull amplifier circuits\}	2005/00084	. . . \{by trimming or adjusting the delay $\}$
4/787	. . . using as active elements semiconductor devices with two electrodes and exhibiting a negative resistance characteristic	$\begin{aligned} & 2005 / 00091 \\ & 2005 / 00097 \end{aligned}$ \{using fuse links\} . . . \{Avoiding variations of delay using feedback, e.g. controlled by a PLL\}
4/793	. . . using tunnel diodes	2005/00104	\{using a reference signal, e.g. a reference
4/80	using as active elements multi-layer diodes		clock $\}$

2005/0011 \{using a separate time interval to calibrate the delay\}
2005/00117	. . . $\{$ Avoiding variations of delay due to line termination $\}$
2005/00123	. . . \{Avoiding variations of delay due to integration tolerances $\}$
2005/0013	. . . \{Avoiding variations of delay due to power supply $\}$
2005/00136	. . . \{Avoiding asymmetry of delay for leading or trailing edge; Avoiding variations of delay due to threshold \}
2005/00143	. . . \{Avoiding variations of delay due to temperature\}
2005/0015	\{Layout of the delay element\}
2005/00156	. . . \{using opamps, comparators, voltage multipliers or other analog building blocks\}
2005/00163	. . \{using bipolar transistors\}
2005/00169	. . . \{using current mirrors \}
2005/00176	. \{using differential stages\}
2005/00182	\{using constant current sources\}
2005/00189	\{in BiCMOS technology
2005/00195	\{using FET's \}
2005/00202	. \{using current mirrors \}
2005/00208	\{using differential stages\}
2005/00215 \{where the conduction path of multiple FET's is in parallel or in series, all having th same gate control \}
2005/00221 $\{$ where the conduction path of the different output FET's is connected in parallel with different gate control, e.g. having different sizes or thresholds, or coupled through different resistors $\}$
2005/00228	. . . \{having complementary input and output signals $\}$
2005/00234	- \{using circuits having two logic levels \}
2005/00241	\{using shift registers \}
2005/00247	\{using counters \}
2005/00254	\{using microprocessors \}
2005/0026	- \{using memories or FIFO's\}
2005/00267	\{using D/A or A / D converters \}
2005/00273	\{using digital comparators\}
2005/0028	. . . \{using varicaps, e.g. gate capacity of a FET with specially defined threshold, as delaying capacitors $\}$
2005/00286	- \{Phase shifter, i.e. the delay between the output and input pulse is dependent on the frequency, and such that a phase difference is obtained independent of the frequency \}
2005/00293	- \{Output pulse is a delayed pulse issued after a rising or a falling edge, the length of the output pulse not being in relation with the length of the input triggering pulse\}
5/003	. Changing the DC level (reinsertion of dc component of a television signal H04N 5/16)
5/007	. . Base line stabilisation (thresholding H03K 5/08)
5/01	. Shaping pulses (discrimination against noise or interference H 03 K 5/125)
5/02	. . by amplifying (H03K 5/04 takes precedence)
5/023	. . . \{using field effect transistors \}
5/026	. . . $\{$ with a bidirectional operation\}
5/04	. by increasing duration; by decreasing duration
5/05	. . . by the use of clock signals or other time reference signals

. . . by the use of delay lines or other analogue delay elements
. . . . \{using dispersive delay lines \}
. . . by the use of resonant circuits
. . by limiting; by thresholding; by slicing, i.e. combined limiting and thresholding (H03K 5/07 takes precedence; comparing one pulse with another $\mathrm{H} 03 \mathrm{~K} 5 / 22$; providing a determined threshold for switching $\underline{H 03 K}$ 17/30)
. . . $\{$ with an adaptive threshold $\}$
. . . . \{modified by switching, e.g. by a periodic signal or by a signal in synchronism with the transitions of the output signal\}
. . . . \{generated by feedback\}
. \{modified by switching, e.g. by a periodic signal or by a signal in synchronism with the transitions of the output signal\}
. . by steepening leading or trailing edges
. Discriminating pulses (measuring characteristics of individual pulses G01R 29/02; separation of synchronising signals in television systems H04N 5/08)
. . Suppression or limitation of noise or interference (specially adapted for transmission systems H04B 15/00, H04L 25/08)
. . . specially adapted for pulses generated by closure of switches, i.e. anti-bouncing devices (debouncing circuits for electronic time-pieces G04G 5/00)

- Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
. . Digitally controlled
. . using a chain of active delay devices
. . . with field-effect transistors
. . by the use of time reference signals, e.g. clock signals
. . by the use of delay lines (H03K 5/133 takes precedence)
. . by the use of resonant circuits
- Arrangements in which pulses are delivered at different times at several outputs, i.e. pulse distributors (distributing, switching or gating arrangements H03K 17/00)
. . \{with two programmable outputs\}
. . \{with more than two outputs\}
. . . \{programmable\}
. . . \{with asynchronously driven series connected output stages $\}$
. . . . \{using a chain of bistable devices\}
. . . . \{using a chain of active delay devices (H03K 5/15053 takes precedence)\}
. . . . \{using a tapped delay line \}
. . . . \{using a chain of monostable devices \}
. . . \{with parallel driven output stages; with synchronously driven series connected output stages $\}$
. . . . \{using bistable devices (H03K 5/15093 takes precedence) $\}$
. . . . \{using a plurality of comparators \}
. . . $\{$ using a plurality of delay lines\}
. . . . \{using a plurality of monostables devices\}
. . . . \{using devices arranged in a shift register\}
. . with two complementary outputs
$5 / 1515$
$5 / 153$

$5 / 1532$
5/1534
. . . \{non-overlapping \}
Arrangements in which a pulse is delivered at the instant when a predetermined characteristic of an input signal is present or at a fixed time interval after this instant (switching at zero crossing H03K 17/13)

- . Peak detectors (measuring characteristics of individual pulses G01R 29/02)
. . Transition or edge detectors
- . Zero-crossing detectors (in measuring circuits G01R 19/175)
- Arrangements in which a continuous pulse train is transformed into a train having a desired pattern
. \{the output pulses having a constant duty cycle\}
- Applications of delay lines not covered by the preceding subgroups
- Monitoring patterns of pulse trains (indicating amplitude G01R 19/00; indicating frequency G01R 23/00; measuring characteristics of individual pulses G01R 29/02)
- Circuits having more than one input and one output for comparing pulses or pulse trains with each other according to input signal characteristics, e.g. slope, integral (indicating phase difference of two cyclic pulse trains G01R 25/00)
- . the characteristic being amplitude
- . . \{using bipolar transistors (H03K 5/2436 takes precedence) $\}$
. . . . $\{$ with at least one differential stage $\}$
. . . . $\{$ using clock signals $\}$
. . . \{using a combination of bipolar and field-effect transistors $\}$
. . . . $\{$ with at least one differential stage \}
. . . . $\{$ using clock signals $\}$
-• . using diodes \}
. . . \{using field effect transistors (H03K 5/2436 takes precedence) $\}$
. . . . $\{$ with at least one differential stage $\}$
. . . . $\{$ using clock signals $\}$
. . the characteristic being duration, interval, position, frequency, or sequence

Manipulating pulses having a finite slope and not covered by one of the other main groups of this subclass (circuits with regenerative action H03K 4/00)

- Amplifying pulses
- Modifying slopes of pulses, e.g. S-correction (Scorrection in television H04N 3/23)

Modulating pulses with a continuously-variable modulating signal

- Amplitude modulation, i.e. PAM
- Position modulation, i.e. PPM
- Frequency or rate modulation, i.e. PFM or PRM
- Duration or width modulation $\{$; Duty cycle modulation $\}$
- Combined modulation, e.g. rate modulation and amplitude modulation
Demodulating pulses which have been modulated with a continuously-variable signal
- of amplitude-modulated pulses
- of position-modulated pulses
- of frequency- or rate-modulated pulses

17/08116

- of duration- or width-mudulated pulses \{or of dutycycle modulated pulses\}
- of pulses having combined modulation

Transforming types of modulations, e.g. positionmodulated pulses into duration-modulated pulses

Producing pulses by distorting or combining sinusoidal waveforms (shaping pulses H03K 5/01; combining sinewaves using elements operating in a non-switching manner H03B 21/00)

Electronic switching or gating, i.e. not by contactmaking and -breaking (gated amplifiers H03F 3/72; switching arrangements for exchange systems using static devices H04Q 3/52)

- \{Switching arrangements with several input- or output terminals (code converters H03M 5/00, H03M 7/00) \}
. . \{with several inputs only \}
. . $\{$ with several outputs only $\}$
- Modifications for accelerating switching
- . $\{$ in thyristor switches $\}$
- • \{in composite switches \}
- . without feedback from the output circuit to the control circuit $\{(\underline{H 03 K} 17 / 0403$, H03K 17/0406 take precedence) $\}$
. . . \{in field-effect transistor switches (H03K 17/0412, H03K 17/0416 take precedence) $\}$
. . . \{in bipolar transistor switches (H03K 17/0412, H03K 17/0416 take precedence) \}
. . . by measures taken in the control circuit
. . . $\{$ in field-effect transistor switches \}
. . . $\{$ in bipolar transistor switches $\}$
. . . . Anti-saturation measures
. . . by measures taken in the output circuit
. . . . $\{$ in field-effect transistor switches \}
-•. . $\{$ in bipolar transistor switches $\}$
- . by feedback from the output circuit to the control circuit $\{(\underline{H 03 K} 17 / 0403, \underline{H 03 K} 17 / 0406$ take precedence) $\}$
-• . \{in field-effect transistor switches \}
. . . \{in bipolar transistor switches \}
. . . Anti-saturation measures
. . . by the use of a transformer
- Modifications for ensuring a fully conducting state
- . \{in field-effect transistor switches \}
- . \{Maximizing the OFF-resistance instead of minimizing the ON-resistance\}
- Modifications for protecting switching circuit against overcurrent or overvoltage
- . \{against radiation hardening \}
- . \{against excessive temperature\}
. . without feedback from the output circuit to the control circuit
. . . \{in field-effect transistor switches (H03K 17/0812, H03K 17/0814 take precedence) $\}$
. . . $\{$ in thyristor switches (H03K 17/0812, H03K 17/0814 take precedence) \}
. . . \{in bipolar transistor switches (H03K 17/0812, H03K 17/0814 take precedence) $\}$
. . . $\{$ in composite switches (H03K 17/0812, H03K 17/0814 take precedence) \}

17/0812	. by measures taken in the control circuit
17/08122	. . . \{in field-effect transistor switches\}
17/08124	. . . [in thyristor switches $\}$
17/08126	. . . \{in bipolar transitor switches\}
17/08128 \{in composite switches\}
17/0814	. . by measures taken in the output circuit
17/08142	. . . \{in field-effect transistor switches \}
17/08144	. . . $\{$ in thyristor switches\}
17/08146	- \{in bipolar transistor switches\}
17/08148	\{in composite switches\}
17/082	. by feedback from the output to the control circuit
17/0822	. . . \{in field-effect transistor switches\}
17/0824	. . \{in thyristor switches $\}$
17/0826	. . . \{in bipolar transistor switches\}
17/0828	. \{in composite switches\}
17/10	. Modifications for increasing the maximum permissible switched voltage
17/102	. . \{in field-effect transistor switches\}
17/105	- \{in thyristor switches $\}$
17/107	. . \{in composite switches \}
17/12	. Modifications for increasing the maximum permissible switched current
17/122	. . \{in field-effect transistor switches \}
17/125	. . \{in thyristor switches\}
17/127	. \{in composite switches\}
17/13	- Modifications for switching at zero crossing (generating an impulse at zero crossing H03K 5/1536)
17/133	. . \{in field-effect transistor switches\}
17/136	. \{in thyristor switches\}
17/14	- Modifications for compensating variations of physical values, e.g. of temperature
17/145	. . \{in field-effect transistor switches \}
17/16	. Modifications for eliminating interference voltages or currents
17/161	. \{in field-effect transistor switches\}
17/162	. . . \{ without feedback from the output circuit to the control circuit\}
17/163	. . $\{$ Soft switching\}
17/164 \{using parallel switching arrangements\}
17/165	. . . \{by feedback from the output circuit to the control circuit\}
17/166	. . . \{Soft switching\}
17/167	. . . \{using parallel switching arrangements \}
17/168	. \{in composite switches\}
17/18	. Modifications for indicating state of switch
17/20	- Modifications for resetting core switching units to a predetermined state
17/22	- Modifications for ensuring a predetermined initial state when the supply voltage has been applied (bistable generators $\mathbf{H 0 3 K} 3 / 12$)
17/223	. \{in field-effect transistor switches\}
2017/226	- \{in bipolar transistor switches\}
17/24	. . Storing the actual state when the supply voltage fails
17/26	. Modifications for temporary blocking after receipt of control pulses
17/28	- Modifications for introducing a time delay before switching (modifications to provide a choice of time-intervals for executing more than one switching action $\mathrm{H} 03 \mathrm{~K} 17 / 296$)
17/284	. . in field effect transistor switches
17/288	in tube switches

. . in thyristor, unijunction transistor or programmable unijunction transistor switches

- Time-programme switches providing a choice of time-intervals for executing more than one switching action and automatically terminating their operation after the programme is completed (electronic clocks comprising means to be operated at preselected times or after preselected timeintervals G04G 15/00)
. Modifications for providing a predetermined threshold before switching (shaping pulses by thresholding H03K 5/08)
. . \{in field-effect transistor switches \}
. . \{in thyristor switches\}
- . \{circuits simulating a diode, e.g. threshold zero\}
- characterised by the components used (H03K 17/04-H03K 17/30, H03K 17/94 take precedence)
. . \{Mechanical switches; Electronic switches controlling mechanical switches, e.g. relais\}
. . by the use, as active elements, of gas-filled tubes
. . by the use, as active elements of vacuum tubes (using diodes H03K 17/74)
. . . \{using microengineered devices, e.g. field emission devices\}
. . by the use, as active elements, of semiconductor devices (using diodes H03K 17/74)
. . . Circuits characterised by the use of more than one type of semiconductor device, e.g. BIMOS, composite devices such as IGBT
. . . the devices being tunnel diodes
. . . the devices being bipolar transistors (bipolar transistors having four or more electrodes H03K 17/72)
. . . . \{using transformer coupling (H03K 17/61 takes precedence) $\}$
. . . . \{in integrated circuits\}
. . . . \{with coupled emitters\}
. . . . with galvanic isolation between the control circuit and the output circuit (H03K 17/78 takes precedence)
. using transformer coupling
. . . . in a Darlington configuration
. . . . Switching arrangements with several input- output-terminals, e.g. multiplexers, distributors (logic circuits H03K 19/00; code converters H03M 5/00, H03M 7/00)
- . . . \{without selecting means (H03K 17/6242-H03K 17/6285 take precedence) \}
. \{using current steering means\}
. \{combined with selecting means (H03K 17/6242 - H03K 17/6285 take precedence) $\}$
. $\{$ using current steering means\}
. $\{$ with storage of control signal \}
. \{with several inputs only and without selecting means\}
. $\{$ using current steering means\}
. \{with several inputs only combined with selecting means $\}$
. $\{$ using current steering means\}
. $\{$ with several outputs only and without selecting means $\}$

| $17 / 6278$ | \{using current steering means\} |
| :--- | :--- | :--- |
| $17 / 6285$ | swith several outputs only combined with |
| | selecting means \} |

. . . . Switching arrangements with several inputor output-terminals, e.g. multiplexers, distributors (H03K 17/722 takes precedence; logic circuits H03K 19/00; code converters H03M 5/00, H03M 7/00)
. . by the use, as active elements, of diodes (by the use of more than one type of semiconductor device H 03 K 17/567; by the use of tunnel diodes H03K 17/58; by the use of negative resistance diodes H03K 17/70)
. . . Switching arrangements with several input- or output-terminals, e.g. multiplexers, distributors (logic circuits H03K 19/00; code converters H03M 5/00, H03M 7/00)
. . using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled
. . . controlling field-effect transistor switches
. . . controlling \{bipolar\} semiconductor switches with more than two PN-junctions, or more than three electrodes, or more than one electrode connected to the same conductivity region
. . . controlling bipolar transistors
. . . . \{using phototransistors\}
. . using non-linear magnetic devices; using non-linear dielectric devices $\{($ H03K 17/95, H03K 17/97 take precedence) \}
. . . Switching arrangements with several input- or output-terminals, e.g. multiplexers, distributors (logic circuits H03K 19/00; code converters H03M 5/00, H03M 7/00)
. . . the devices being transfluxors
. . . the devices being thin-film devices
. . . the devices being twistors
. . By the use, as active elements, of beam-deflection tubes
. . by the use, as active elements, of galvano-
magnetic devices, e.g. Hall-effect devices (H03K 17/95, H03K 17/97 take precedence)
. . by the use, as active elements, of superconductive devices
. characterised by the way in which the control signals are generated
. . \{using an optical detector (H03K 17/968 takes precedence) $\}$
. . . \{using a plurality of optical emitters or detectors, e.g. keyboard\}
. . Proximity switches (H03K 17/96 takes precedence)
. . . \{constructional details (of proximity switches using a magnetic detector H03K 17/9505) \}
. . . using a magnetic detector
. . . . \{Measures for increasing reliability \}
. . . . \{Constructional details\}
. \{with illumination\}
. . . . \{Measures for supplying operating voltage to the detector circuit\}
. . . . \{using digital techniques\}
. . . . \{using non-linear magnetic devices \}
. . . . \{using galvanomagnetic devices\}
. . . . \{using inductive coils\}
. \{with a galvanically isolated probe\}
\{controlled by an oscillatory signal (H03K 17/9537 takes precedence) \}

2017/9527 \{Details of coils in the emitter or receiver; Magnetic detector comprising emitting and receiving coils $\}$
17/953 \{forming part of an oscillator (H03K 17/9537 takes precedence) \}
17/9532	- \{with variable frequency
17/9535	\{with variable amplitude\}
17/9537	\{in a resonant circuit\}
17/954	. \{controlled by an oscillatory signal\}
17/9542	- \{forming part of an oscillator\}
17/9545 $\{$ with variable frequency $\}$
17/9547	\{ with variable amplitude\}
17/955	. using a capacitive detector
17/96	. . Touch switches (specially adapted for electronic time-pieces with no moving parts G04G 21/08)
2017/9602	. . . \{characterised by the type or shape of the sensing electrodes $\}$
2017/9604	\{characterised by the number of electrodes \}
2017/9606 \{using one electrode only per touch switch $\}$
2017/9609 $\{$ where the electrode is the object to be switched\}
2017/9611	\{where the electrode is a plant\}
2017/9613	\{using two electrodes per touch switch\}
2017/9615 \{using three electrodes per touch switch\}
17/9618	. \{using a plurality of detectors, e.g. keyboard\}
17/962	- \{Capacitive touch switches\}
17/9622	. . . $\{$ using a plurality of detectors, e.g. keyboard\}
17/9625	\{using a force resistance transducer\}
17/9627	. . \{Optical touch switches\}
17/9629 \{using a plurality of detectors, e.g. keyboard\}
17/9631 \{using a light source as part of the switch\}
2017/9634 \{using organic light emitting devices, e.g. light emitting polymer [OEP] or OLED\}
17/9636	- \{using a pulsed light source\}
17/9638	\{using a light guide\}
17/964	\{Piezoelectric touch switches\}
17/9643 \{using a plurality of detectors, e.g. keyboard
17/9645	- \{Resistive touch switches $\}$
17/9647 \{using a plurality of detectors, e.g. keyboard
17/965	. . Switches controlled by moving an element forming part of the switch
$17 / 967$. . . having a plurality of control members, e.g. keyboard (H03K 17/969, H03K 17/972, H03K 17/98 take precedence)
17/968	. using opto-electronic devices
17/969 having a plurality of control members, e.g. keyboard
17/97	. using a magnetic movable element
2017/9706	. \{Inductive element $\}$
2017/9713 \{Multiposition, e.g. involving comparison with different thresholds\}
17/972 having a plurality of control members, e.g. keyboard
$17 / 975$. . . using a capacitive movable element
2017/9755	. \{Ohmic switch;\}
17/98 having a plurality of control members, e.g. keyboard

19/00 Logic circuits, i.e. having at least two inputs acting on one output (circuits for computer systems using fuzzy logic G06N 7/02); Inverting circuits
19/0002
19/0005
19/0008
19/001
19/0013
19/0016
19/0019
19/0021
19/0024
19/0027
19/003
19/00307
19/00315
19/00323
19/0033
19/00338
19/00346

19/00353
19/00361
19/00369

19/00376
19/00384
19/00392
19/007
19/0075
19/01
19/013
19/0133
19/0136
19/017
19/01707
19/01714

19/01721
19/01728

19/01735

19/01742
19/0175

19/017518
19/017527 \{ with at least one differential stage \}
19/017536 . . . \{using opto-electronic devices \}
19/017545 . . \{Coupling arrangements; Impedance matching circuits\}
19/017554

19/017563
19/017572 . . . \{using opto-electronic devices \}

19/017581	\{programmable
19/01759	- \{with a bidirectional operation\}
19/018	using bipolar transistors only
19/01806	. \{Interface arrangements\}
19/01812	. \{with at least one differential stage\}
19/01818	- \{for integrated injection logic (I2L)\}
19/01825	. . . \{Coupling arrangements, impedance matching circuits
19/01831 \{with at least one differential stage\}
19/01837	\{programmable\}
19/01843	\{with a bidirectional operation\}
19/0185	using field effect transistors only
19/018507	\{Interface arrangements \}
19/018514	. . . \{with at least one differential stage (H03K 19/018528 and H03K 19/018542 take precedence) $\}$
19/018521	. \{of complementary type, e.g. CMOS\}
19/018528	- \{with at least one differential stage \}
19/018535	\{of Schottky barrier type [MESFET]\}
19/018542	. \{ with at least one differential stage\}
19/01855	- \{synchronous, i.e. using clock signals \}
19/018557	. . . \{Coupling arrangements; Impedance matching circuits $\}$
19/018564 \{with at least one differential stage (H03K 19/018578 takes precedence) \}
19/018571	- \{of complementary type, e.g. CMOS $\}$
19/018578	- \{ with at least one differential stage \}
19/018585	\{programmable \}
19/018592	\{with a bidirectional operation\}
19/02	using specified components ($\{$ H03K 19/0005 - H03K 19/0021\}, H03K 19/003-H03K 19/0175 take precedence)
19/04	using gas-filled tubes
19/06	- using vacuum tubes (using diode rectifiers H03K 19/12)
19/08	. . using semiconductor devices (H03K 19/173 takes precedence; wherein the semiconductor devices are only diode rectifiers H03K 19/12)
19/0806	\{using charge transfer devices (DTC, CCD) \}
19/0813	- \{Threshold logic $\}$
19/082	using bipolar transistors
19/0823	. . . \{Multistate logic\}
19/0826 \{one of the states being the high impedance or floating state\}
19/084	Diode-transistor logic
19/0843	. \{Complementary transistor logic [CTL]\}
19/0846	. $\{$ Schottky transistor logic [STL]\}
19/086 Emitter coupled logic
19/0863 \{Emitter function logic [EFL]; Base coupled logic [BCL]\}
19/0866 \{Stacked emitter coupled logic (H03K 19/1738 takes precedence) $\}$
19/088	Transistor-transistor logic
19/09	. Resistor-transistor logic
19/091 Integrated injection logic or merged transistor logic
19/0912 \{Static induction logic [STIL] (when the logic function is fullfilled by a fet H03K 19/09414) \}
19/0915	- \{Integrated schottky logic [ISL]\}
19/0917	. . \{Multistate logic \}
19/094	ect trans

19/09403 \{using junction field-effect transistors (H03K 19/096 takes precedence)\}
19/09407 \{ of the same canal type\}
19/0941	. \{of complementary type\}
19/09414 \{with gate injection or static induction [STIL] (H03K 19/0912 takes precedence) \}
19/09418 $\{$ in combination with bipolar transistors [BIFET]\}
19/09421 \{Diode field-effect transistor logic (H03K 19/0956, H03K 19/096 take precedence) $\}$
19/09425	. . . \{Multistate logic (H03K 19/096 takes precedence) \}
19/09429 \{one of the states being the high impedance or floating state\}
19/09432	- \{with coupled sources or source coupled logic (H03K 19/096 takes precedence) \}
19/09436 \{Source coupled field-effect logic [SCFL]\}
19/0944 using MOSFET \{or insulated gate fieldeffect transistors, i.e. IGFET $\}$ (H03K 19/096 takes precedence)
19/09441	\{ of the same canal type\}
19/09443 $\{$ using a combination of enhancement and depletion transistors\}
19/09445 \{with active depletion transistors\}
19/09446 \{using only depletion transistors\}
19/09448 \{in combination with bipolar transistors [BIMOS]\}
19/0948 using CMOS \{or complementary insulated gate field-effect transistors\}
19/09482 \{using a combination of enhancement and depletion transistors $\}$
19/09485 \{with active depletion transistors\}
19/09487	\{using only depletion transistors\}
19/0952 using Schottky type FET \{MESFET\}(\{H03K 19/09421, H03K 19/09432\}, H03K 19/096 take precedence)
19/0956 Schottky diode FET logic (H03K 19/096 takes precedence)
19/096 Synchronous circuits, i.e. using clock signals $\{($ H03K 19/01728, H03K 19/01855 take precedence) $\}$
19/0963 \{using transistors of complementary type (H03K 19/0966 takes precedence) $\}$
19/0966 \{Self-timed logic\}
19/098	. . . using thyristors
19/10	. . . using tunnel diodes
19/12	. . using diode rectifiers
19/14	. . using opto-electronic devices, i.e. light-emitting and photoelectric devices electrically- or optically-coupled (optical logic elements G02F 3/00)
19/16	. . using saturable magnetic devices
19/162	. . . using parametrons
19/164	. . . using ferro-resonant devices
19/166	. . . using transfluxors
19/168	. . . using thin-film devices
19/17	. using twistors
19/173	. . using elementary logic circuits as components
19/1731	Optimisation thereof\}

/1732 \{by limitation or reduction of the pin/ gate ratio (for data-processing equipment G06F 1/22) \}
19/1733	. . . \{Controllable logic circuits (H03K 19/177 takes precedence) $\}$
19/1735 \{by wiring, e.g. uncommitted logic arrays
19/1736	- \{in which the wiring can be modified $\}$
19/1737 \{using multiplexers (H03K 19/1738 takes precedence) $\}$
19/1738 \{using cascode switch logic [CSL] or cascode emitter coupled logic [CECL]\}
19/177	arranged in matrix form
19/17704 the logic functions being realised by the interconnection of rows and columns
19/17708 $\{$ using an AND matrix followed by an OR matrix, i.e. programmable logic arrays \}
19/17712 \{one of the matrices at least being reprogrammable \}
19/17716 $\{$ with synchronous operation, i.e. using clock signals, e.g. of I/O or coupling register (H03K 19/17712 takes precedence) $\}$
19/1772 $\{$ with synchronous operation of at least one of the logical matrixes\}
19/17724	. . . Structural details of logic blocks
19/17728 Reconfigurable logic blocks, e.g. lookup tables
19/17732	. Macroblocks
19/17736	Structural details of routing resources
19/1774	. \{for global signals, e.g. clock, reset\}
19/17744	- \{for input/output signals\}
19/17748	. Structural details of configuration resources
19/17752	- for hot reconfiguration
19/17756 for partial configuration or partial reconfiguration
19/17758 for speeding up configuration or reconfiguration
19/1776	for memories
19/17764	. for reliability
19/17768	. for security
19/17772 for powering on or off
19/1778 Structural details for adapting physical parameters
19/17784 for supply voltage
19/17788	. for input/output [I/O] voltages
19/17792	. for operating speed
19/17796 for physical disposition of blocks
19/18	. . using galvano-magnetic devices, e.g. Hall-effect devices
19/185	. . using dielectric elements with variable dielectric constant, e.g. ferro-electric capacitors
19/19	. . using ferro-resonant devices
19/195	. using superconductive devices
19/1952	. . . \{with electro-magnetic coupling of the control current $\}$
19/1954	- \{with injection of the control current \}
19/1956	- \{using an inductorless circuit\}
19/1958	- . . \{Hybrid configuration, i.e. using electromagnetic coupling and injection of the control current $\}$
19/20	. characterised by logic function, e.g. AND, OR, NOR, NOT circuits (H03K 19/003-H03K 19/01 take precedence)

. . EXCLUSIVE-OR circuits, i.e. giving output if input signal exists at only one input; COINCIDENCE circuits, i.e. giving output only if all input signals are identical
. . . \{using bipolar transistors\}
. . . \{using field-effect transistors\}

- . . . \{using Schottky type FET [MESFET]\}
. . Majority or minority circuits, i.e. giving output having the state of the majority or the minority of the inputs

Details of pulse counters or frequency dividers

- Input circuits
- . \{comprising pulse shaping or differentiating circuits $\}$
. . \{comprising logic circuits\}
. Output circuits
. . comprising logic circuits
. . with parallel read-out
- . with series read-out of number stored
. Circuits for carrying over pulses between successive decades
. . with field effect transistors
- Circuits for visual indication of the result
. . using glow discharge lamps
- Starting, stopping or resetting the counter (counters with a base other than a power of two H03K 23/48, H03K 23/66)
. Monitoring; Error detection; Preventing or correcting improper counter operation
- . \{Arrangements for storing the counting state in case of power supply interruption\}
. . \{Synchronisation of counters\}

Pulse counters comprising counting chains; Frequency dividers comprising counting chains

 (H03K 29/00 takes precedence)- \{using elements not covered by groups H03K 23/002 and H03K 23/74-H03K 23/84\}
. \{using semiconductor devices (H03K 23/78, H03K 23/80, H03K 23/84 take precedence) $\}$
- \{Counters counting in a non-natural counting order, e.g. random counters \}
. . \{using minimum change code, e.g. Gray Code\}
. . \{using excess three code\}
. . \{using biquinary code\}
- Gating or clocking signals applied to all stages, i.e. synchronous counters $\{(H 03 \mathrm{~K} 23 / 74-$ H03K 23/84 take precedence) $\}$
. . Out-of-phase gating or clocking signals applied to counter stages
. . . \{using bistables\}
. . . using field-effect transistors $\{(\mathrm{H} 03 \mathrm{~K} 23 / 46$ and H03K 23/425 take precedence) \}
. . . using charge transfer devices, i.e. bucket brigade or charge coupled devices
. . with a base or radix other than a power of two (H03K 23/42 takes precedence)
. . . \{with a base which is an odd number\}
. . . \{with a base which is a non-integer\}
. . using bi-stable regenerative trigger circuits (H03K 23/42-H03K 23/48 take precedence)
. . . \{ with a base or a radix other than a power of two (H03K 23/54 takes precedence) \}
. . . $\{$ with a base which is an odd number \}
. . with a base which is a non-integer
. . with a base which is an odd number (H03K 23/66 takes precedence)
- . Decade counters (H03K 23/66 takes precedence)
- using relays
- using magnetic cores or ferro-electric capacitors
- . $\{$ using superconductive devices $\}$
- . \{using thin-film devices \}
- using opto-electronic devices
- using semiconductor devices having only two electrodes, e.g. tunnel diode, multi-layer diode
- using gas-filled tubes
- . \{using vacuum tubes \}
- using thyristors or unijunction transistors
- reversible (H03K 23/40 - H03K 23/84 take precedence)

Pulse counters with step-by-step integration and static storage; Analogous frequency dividers

- . reversible
- with a base or radix other than a power of two (H03K 23/40 - H03K 23/62 take precedence)
- . with a variable counting base, e.g. by presetting or by adding or suppressing pulses
- . $\{$ by adding or suppressing pulses $\}$
- . . \{by presetting \}
. . . \{by switching the base during a counting cycle\}
- comprising charge storage, e.g. capacitor without polarisation hysteresis
- . using auxiliary pulse generator triggered by the incoming pulses
- comprising hysteresis storage

Pulse counters in which pulses are continuously circulated in a closed loop; Analogous frequency dividers (feedback shift register counters H03K 23/54)

Pulse counters comprising multi-stable elements, e.g. for ternary scale, for decimal scale; Analogous frequency dividers

29/04
29/06

99/00

2217/00

2217/0009
2217/0018

2217/0027

2217/0036
2217/0045

2217/0054
2217/0063

2217/0072

2217/0081
2217/009
2217/94
2217/94005
2217/9401
2217/94015

- using multi-cathode gas discharge tubes
- using beam-type tubes, e.g. magnetrons, cathode-ray tubes

Subject matter not provided for in other groups of this subclass

Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K 17/00

- AC switches, i.e. delivering AC power to a load
- Special modifications or use of the back gate voltage of a FET
- Measuring means of, e.g. currents through or voltages across the switch
- Means reducing energy consumption
- Full bridges, determining the direction of the current through the load
- Gating switches, e.g. pass gates
- High side switches, i.e. the higher potential [DC] or life wire [AC] being directly connected to the switch and not via the load
- Low side switches, i.e. the lower potential [DC] or neutral wire [AC] being directly connected to the switch and not via the load
- Power supply means, e.g. to the switch driver
- Resonant driver circuits
- characterised by the way in which the control signal is generated
. . activated by voice or sound
- Calibration techniques
. . Mechanical, e.g. by displacement of a body, a shielding element, or a magnet, in or out of the sensing area
2217/94021 • . . with human activation, e.g. processes requiring or being triggered by human intervention, userinput of digital word or analog voltage
$2217 / 94026$. . . Automatic threshold calibration; e.g. threshold automatically adapts to ambient conditions or follows variation of input
2217/94031
2217/94036

2217/94042
2217/94047
2217/94052
2217/94057
2217/94063
2217/94068
2217/94073
2217/94078
2217/94084

2217/94089
2217/94094

2217/941
2217/94102
2217/94104

- Calibration involving digital processing
- . Multiple detection, i.e. where different switching signals are generated after operation of the user is detected at different time instants at different locations during the actuation movement by two or more sensors of the same or different kinds
- Means for reducing energy consumption
. . Cascode connected switches
. . with evaluation of actuation pattern or sequence, e.g. tapping
. . Rotary switches
. . . with optical detection
. . . with magnetic detection
. . . with capacitive detection
. . . with acoustic detection
. . Transmission of parameters among sensors or between sensor and remote station
. . Wireless transmission
- . Wired transmission, e.g. via bus connection or similar
. . using an optical detector
. . . characterised by the type of activation
. . . . using a light barrier

2217/94106 Passive activation of light sensor, e.g. by ambient light
2217/94108	. . . making use of reflection
2217/94111	. . . having more than one emitter
2217/94112	- having more than one receiver
2217/94114	. . . Optical multi axis
2217/94116	. increasing reliability, fail-safe
2217/945	Proximity switches
2217/95	using a magnetic detector
2217/952 Detection of ferromagnetic and nonmagnetic conductive targets
2217/954	Ferromagnetic case
2217/956 Negative resistance, e.g. LC inductive proximity switches
2217/958	. . . involving transponders
2217/96	Touch switches
2217/96003	. using acoustic waves, e.g. ultrasound
2217/96007 by reflection
2217/96011 with propagation, SAW or BAW
2217/96015	. . . Constructional details for touch switches (for capacitive touch switches see H03K 2217/9607)
2217/96019	. using conductive paint
2217/96023 Details of electro-mechanic connections between different elements, e.g.: sensing plate and integrated circuit containing electronics
2217/96027 Piezoelectric snap spring
2217/96031	. Combination of touch switch and LC display
2217/96035	by temperature detection, i.e. body heat
2217/96038	Inductive touch switches
2217/96042	with illumination
2217/96046	. Key-pad combined with display, back-lit
2217/9605	. . . Detection of leakage or discharge current across the touching body to ground
2217/96054	. . . Double function: touch detection combined with detection of a movable element
2217/96058	. . . Fail-safe touch switches, where switching takes place only after repeated touch
2217/96062	. with tactile or haptic feedback
2217/96066	. . . Thumbwheel, potentiometer, scrollbar or slider simulation by touch switch
2217/9607	Capacitive touch switches
2217/960705 Safety of capacitive touch and proximity switches, e.g. increasing reliability, fail-safe
2217/96071	characterised by the detection principle
2217/960715 Rc-timing; e.g. measurement of variation of charge time or discharge time of the sensor
2217/96072 Phase comparison, i.e. where a phase comparator receives at one input the signal directly from the oscillator, at a second input the same signal but delayed, with a delay depending on a sensing capacitance
2217/960725 Charge-transfer
2217/96073	- Amplitude comparison
2217/960735	. characterised by circuit details
2217/96074 Switched capacitor
2217/960745 Capacitive differential; e.g. comparison with reference capacitance
2217/96075 involving bridge circuit
2217/960755 Constructional details of capacitive touch and proximity switches

2217/96076	with spring electrode
2217/960765	Details of shielding arrangements
2217/96077	- comprising an electrode which is floating
2217/960775 Emitter-receiver or "fringe" type detection, i.e. one or more field emitting electrodes and corresponding one or more receiving electrodes
2217/96078 Sensor being a wire or a strip, e.g. used in automobile door handles or bumpers
2217/960785	ith illumination
2217/96079	. using a single or more light guides
2217/960795 using organic light emitting devices, e.g. light emitting polymer [OEP] or OLED
2217/965	. . Switches controlled by moving an element forming part of the switch
2217/9651	. . . the moving element acting on a force, e.g. pressure sensitive element
2217/9653	with illumination
2217/9655	. using a single or more light guides
2217/9656 using organic light emitting devices, e.g. light emitting polymer [OEP] or OLED
2217/9658	. . . Safety, e.g. fail-safe switching requiring a sequence of movements

