Science of Innovation video series

“Science of Innovation” is a multi-part series produced by NBC Learn, the educational arm of NBC News, in partnership with the National Science Foundation (NSF) and the United States Patent and Trademark Office (USPTO). The series highlights innovations, and also explains the specific processes that helped bring them about, such as the need to imagine and invent, as well as the desire to improve existing innovations and even inspire others. The stories are told through the eyes of scientists and engineers who are funded by NSF, and have used patents and sometimes trademarks to protect their work. Innovation isn’t just about any one invention or inventor, it’s a process that anyone from a garage tinkerer to a federally funded scientist often takes in order to achieve an innovation.

The “Science of Innovation” series launched on February 11, 2013, the 165th birthday of Thomas Alva Edison, to underscore the fact that the spirit of innovation lives on in the United States today. NBC News correspondent Ann Curry narrated the original series. On February 17, 2016, six new videos were released. The latest collection focuses on advanced manufacturing and highlights how innovation has the potential to turn fundamental science and engineering ideas into significant societal and economic impacts. The new collection is narrated by NBC News and MSNBC anchor Kate Snow. The entire video collection is available for free and aligns to state and national education standards.

What is Innovation?

Whether it happens among students in a classroom, or scientists and engineers in a laboratory, innovation is a process, a series of steps that begins with imagination, and results in the creation of something of value for society. The videos below are delivered from USPTO's YouTube channel (link is external)

Innovation Overview

Innovation. It's a word that touches every facet of our everyday culture from business to science and even the arts. Innovation is often associated with creating new things or ideas and includes improving upon old ones too. Businesses around the world have a great need to continuously innovate to stay competitive in the global marketplace and to bring consumers the latest and greatest products and services. Innovation is not defined by just a single event or even a single brilliant idea. It is truly about a process, a series of steps that begins with human imagination and creativity, and results in the creation of something of value for society to enjoy. The creation of intellectual property takes vision, perseverance, and often involves people from different backgrounds and expertise collaborating in order to transform an idea into something that is real and tangible. In this series, you will see how scientists and engineers come together through the process of innovation to create and help inspire a future of amazing possibilities. 

Back to top

3-D Bioprinting (NEW)

Adam Feinberg at Carnegie Mellon University has come up with a technique that expands the use of 3-D printing technology and could one day allow researchers to print heart tissue.

Back to top

Origami Structures (NEW)

Origami is the ancient Japanese art of paper folding. But to engineer Mary Frecker of Pennsylvania State University, it is the future for designing tools that could be used in fields such as medicine and space exploration.

Back to top

Friction-Stir Welding (NEW)

Welding has long been used to join pieces of metal together. At the University of North Texas, Rajiv Mishra is using a form of welding in a new technology that can improve metal’s strength, toughness, and other properties and could bring new opportunities to the automotive and aircraft industries.

Back to top

Motion Controller for Virtual Reality (NEW)

William Provancher of Tactical Haptics has developed a device that combines the sense of touch with technology. Called the "reactive grip," it allows the user to experience the virtual world in a whole new way.

Back to top

Micro-Fabrication for Cochlear Implants (NEW)

Angelique Johnson is the CEO of MEMStim, a company that is innovating how electrode arrays in cochlear implants are manufactured. Using automated micro-fabrication, instead of costly hand-made manufacturing, Johnson is able to lower the cost of production, allowing more people in need of implants to afford them.

Back to top

Using Viruses to Make Batteries (NEW)

While most people see viruses as harmful, Angela Belcher at MIT sees the future of energy. Belcher uses viruses engineered in her laboratory to form nano-scale wires for tiny batteries that could eventually be used to produce a wide range of electronics at a lower cost.

Back to top

3-D Printing

3-D printing is a manufacturing technique developed with the help of Professors Michael Cima and Emanuel Sachs from the Massachusetts Institute of Technology. Once just used to create prototypes, 3-D printers are now used by people from engineers to home inventors to create a variety of objects. 

Back to top

Anti-Counterfeiting Devices

Electronics, apparel, and pharmaceuticals are only some of the products counterfeiters try to fake. Using nanotechnology, Professor Evangelyn Alocilja, a biosystems engineer at Michigan State University, has developed a product authentication process that may help consumers determine if a product is genuine or fake.

Back to top

Bio Fuels

While sources of biofuel currently exist, such as ethanol made from corn, Professor Steve Hutcheson at the University of Maryland is developing a new approach to producing biofuels from cellulosic biomass, using a bacterium discovered in the Chesapeake Bay. 

Back to top

Biometrics

In a science known as biometrics, physical or behavioral characteristics are used for personal identification. Arun Ross, a professor at West Virginia University, explains that the sclera of the eye is another biometric trait that can be used, an idea he researched and developed into a method that he patented.

Back to top

Bionic Limbs

Professor Homayoon Kazerooni is a robotics engineer at the University of California, Berkeley with more than 40 patents to his name. His research on exoskeletons relies on more than just ingenuity and engineering expertise, it's also an example of how inspiration can play a part in the innovation process.

Back to top

Self-Driving Cars

At Google® headquarters in Mountain View, California, computer scientist Sebastian Thrun and his team of software engineers are creating a fleet of self-driving cars. Their approach uses artificial intelligence.

Back to top

Electronic Tattoos

Rose Professors John Rogers and Yonggang Huang have collaborated to design and engineer an electronic tattoo, a microelectronic health monitor that adheres to the surface of human skin. Their work is an example of how collaboration is often a key part of the innovation process.

Back to top

Fuel Cell Efficiency

Professors Reginald Farrow and Zafar Iqbal at the New Jersey Institute of Technology have collaborated on a series of innovations to make the energy conversion process that occurs within fuel cells as efficient as possible.

Back to top

Smart Concrete

Concrete is one of the most common construction materials in the world, with its basic technology dating back to the ancient Romans. Engineers like Professor Deborah Chung at the State University of New York at Buffalo are using the innovation process to turn this old idea into a new technology.

Back to top

Synthetic Diamonds

As an alternative to finding diamonds in nature for his scientific experiments, Professor Russell Hemley of the Geophysical Laboratory at the Carnegie Institution of Washington is creating a method of making large synthetic diamonds in the laboratory.

Back to top